zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The Bogoliubov renormalization group and solution symmetry in mathematical physics. (English) Zbl 0988.81082
Summary: Evolution of the concept known in theoretical physics as the renormalization group (RG) is presented. The corresponding symmetry, that was first introduced in quantum field theory (QFT) in the mid-1950s, is a continuous symmetry of a solution with respect to transformations involving the parameters (e.g., those, determining boundary conditions) which specify some particular solution. After a short detour into Wilson’s discrete semi-group, we follow the expansion of the QFT RG and argue that the underlying transformation, being considered as a reparametrization, is closely related to the property of self-similarity. It can be treated as its generalization - Functional Self-similarity (FS). Next, we review the essential progress made in the last decade in the application of the FS concept to boundary value problems formulated in terms of differential equations. A summary of a regular approach, recently devised for discovering the RG = FS symmetries with the help of modern Lie group analysis, and some of its applications are given. As the principal physical illustration, we consider the solution of the problem of a self-focusing laser beam in a nonlinear medium.

MSC:
81T17Renormalization group methods (quantum theory)
WorldCat.org
Full Text: DOI arXiv
References:
[1] Stueckelberg, E. E. C; Petermann, A.: Helv. phys. Acta. 22, 499-520 (1953)
[2] D.V. Shirkov, Historical remarks on the renormalization group, in: L.M. Brown (Ed.), Appendix in the collective monograph Renormalization: From Lorentz to Landau (and Beyond), Springer, New York, 1993, pp. 167--186; D.V. Shirkov, On the early days of renormalization group, in: L. Hoddeson et al. (Eds.), The Rise of the Standard Model, Proceedings of the Third International Symposium on the History of Particle Physics, SLAC, 1992, Cambridge Univ. Press, Cambridge, 1997, pp. 250--258. · Zbl 0781.65070
[3] Gell-Mann, M.; Low, F.: Phys. rev.. 95, 1300-1312 (1954)
[4] N.N. Bogoliubov, D.V. Shirkov, Dokl. Akad. Nauk SSSR 103 (1955) 203--206 (in Russian); see also in Nuovo Cimento 3 (1956) 845--863.
[5] N.N. Bogoliubov, D.V. Shirkov, Dokl. AN SSSR 103 (1955) 391--394 (in Russian); see also in Nuovo Cimento 3 (1956) 845--863.
[6] D.V. Shirkov, Dokl. AN SSSR 105 (1955) 972--975 (in Russian); see also in Nuovo Cimento 3 (1956) 845--863. · Zbl 0065.43904
[7] Bogoliubov, N. N.; Shirkov, D. V.: Nuovo cimento. 3, 845-863 (1956)
[8] L.V. Ovsyannikov, Dokl. AN SSSR 109 (1956) 1112--1115 (in Russian) (for English translation see in: Yu. Trutnev (Ed.), Intermissions ... WS, 1998, pp. 76--79); C. Callan, Phys. Rev. D 2 (1970) 1541--1547; K. Symanzik, Comm. Math. Phys. 18 (1970) 227--246.
[9] Landau, L. D.: Nuovo cimento. 3, No. Supp., 80-104 (1955)
[10] I.F. Ginzburg, Dokl. AN SSSR 110 (1956) 535--538 (in Russian), see Chapter ”Renormalization Group” in N. Bogoliubov, D. Shirkov, Introduction to the Theory of Quantized Fields, 1959; Wiley-Interscience, New York, 1980.
[11] N. Bogoliubov, D. Shirkov, Introduction to the Theory of Quantized Fields, 1959; Wiley-Interscience, New York, 1980. · Zbl 0088.21701
[12] D.V. Shirkov, Theor. Math. Phys. 119 (1999) 55--66; hep-th/9810246.
[13] Kadanoff, L.: Physics. 2, 263-272 (1966)
[14] Wilson, K.: Phys. rev.. 4, 3174-3183 (1971)
[15] P.G. De Gennes, Phys. Lett. 38A (1972) 339--340; J. des Cloiseaux, J. Phys. (Paris) 36 (1975) 281--292.
[16] V.I. Alkhimov, Theor. Math. Phys. 39 (1979) 422--424; 59 (1984) 591--597.
[17] T.L. Bell et al., Phys. Rev. A 17 (1978) 1049--1057; G.F. Chapline, Phys. Rev. A21 (1980) 1263--1271.
[18] B.V. Chirikov, Lect. Notes Phys. 179 (1983) 29--46; B.V. Chirikov, D.L. Shepelansky, Chaos Border and Statistical Anomalies, in: D.V. Shirkov, D.I. Kazakov, A.A. Vladimirov (Eds.), Renormalization Group, Proceedings of 1986 Dubna Conference, WS, Singapore, 1988, pp. 221--250; Yu.G. Sinai, K.M. Khanin, Renormalization group method in the theory of dynamical systems, in: D.V. Shirkov, D.I. Kazakov, A.A. Vladimirov (Eds.), Renormalization Group, Proceedings of 1986 Dubna Conference, WS, Singapore, 1988, pp. 251--277; A. Peterman, A. Zichichi, Nuovo Cimento 109A (1996) 341--355.
[19] Shirkov, D. V.: Sov. phys. JETP. 9, 421-424 (1959)
[20] C. DeDominicis, P. Martin, Phys. Rev. A 19 (1979) 419--422; L.Ts. Adzhemyan et al., Theor. Math. Phys. 58 (1984) 47--51; 64 (1985) 777--784; A.N. Vasiliev, Quantum Field Renormalization Group in the Theory of Turbulence and in Magnetic Hydrodynamics, in: D.V. Shirkov, D.I. Kazakov, A.A. Vladimirov (Eds.), Renormalization Group, Proceedings of 1986 Dubna Conference, WS, Singapore, 1988, pp. 146--159.
[21] A.N. Vasiliev, Quantum Field Renormalization Group in the Theory of Critical Behavior and Stochastic Dynamics, PINF Publ., St-Petersburg, 1998, 773 pp (in Russian), also Taylor and Francis Group PLC, London, in preparation.
[22] D.V. Shirkov, Teor. Mat. Fiz. 60 (1984) 778--782; The RG method and functional self-similarity in physics, in: R.Z. Sagdeev (Ed.), Nonlinear and Turbulent Processes in Physics, Vol. 3, Harwood Acad. Publ., New York, 1984, pp. 1637--1647.
[23] D.V. Shirkov, Renormalization group in modern physics, in: D.V. Shirkov, D.I. Kazakov, A.A. Vladimirov (Eds.), Renormalization Group, Proceedings of 1986 Dubna Conference, WS, Singapore, 1988, pp. 1--32; Int. J. Mod. Phys. A 3 (1988) 1321--1341; Several topics on renorm-group theory, in: D.V. Shirkov, V.B. Priezzhev (Eds.), Renormalization group ’91, Proceedings of Second International Conference, September 1991, Dubna, USSR, WS, Singapore, 1992, pp. 1--10; Renormalization group in different fields of theoretical physics, KEK Report 91-13 (February 1992), 85pp.
[24] Mnatsakanyan, M. A.: Sov. phys. Dokl.. 27, 856-859 (1982)
[25] Pelletier, G.: Plasma phys.. 24, 421-443 (1980)
[26] Ja.B. Zel’dovich, G.I. Barenblatt, Sov. Phys. Dokl. 3 (1) (1958) 44--47; see also G.I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge Univ. Press, Cambridge, 1996 (Chapter 5).
[27] Blank, V. Z.; Bonch-Bruevich, V. L.; Shirkov, D. V.: Sov. phys. JETP. 3, 845-863 (1956)
[28] Shirkov, D. V.: Sov. phys. Dokl.. 27, 197-200 (1982)
[29] V.F. Kovalev, V.V. Pustovalov, D.V. Shirkov, J. Math. Phys. 39 (1998) 1170--1188; hep-th/9706056.
[30] Ovsyannikov, L. V.: Group analysis of differential equations. (1982) · Zbl 0532.20016
[31] Olver, Peter J.: Applications of Lie groups to differential equations. (1986) · Zbl 0588.22001
[32] N.H. Ibragimov (Ed.), CRC Handbook of Lie Group Analysis of Differential Equations, 3 Vols. CRC Press, Boca Raton, FL, USA, 1994--1996.
[33] Ibragimov, N. H.: Transformation groups applied to mathematical physics. (1985) · Zbl 0558.53040
[34] Sedov, L. I.: Similarity and dimensional analysis. (1959) · Zbl 0121.18504
[35] Birkhoff, G.: Hydrodynamics, A study in logic, fact and similitude. (1960) · Zbl 0095.20303
[36] Kovalev, V. F.; Pustovalov, V. V.: Lie groups appl.. 1, 104-120 (1994) · Zbl 0938.35599
[37] C.R. Stephens, Why two renormalization groups are better than one, in: D.V. Shirkov, D.I. Kazakov, V.B. Priezzhev (Eds.), Renormalization group ’96, Proceedings of Third International Conference, August 1996, Dubna, Russia, JINR publ., Dubna, 1997, pp. 392--407; Int. J. Mod. Phys. 12 (1998) 1379--1396.
[38] Chen, L. -Y; Goldenfeld, N.; Oono, Y.: Phys. rev.. 54, 376-394 (1996)
[39] Bricmont, J.; Kupiainen, A.; Lin, G.: Comm. pure appl. Math.. 47, 893-922 (1994)
[40] Kunihiro, T.: Progr. theor. Phys.. 94, 503-514 (1995)
[41] V.F. Kovalev, S.V. Krivenko, V.V. Pustovalov, The Renormalization group method based on group analysis, in: D.V. Shirkov, V.B. Priezzhev (Eds.), Renormalization group ’91, Proceedings of Second International Conference, September 1991, Dubna, USSR, WS, Singapore, 1992, pp. 300--314.
[42] V.F. Kovalev, V.Yu. Bychenkov, V.T. Tikhonchuk, Phys. Rev. A 61(3) (2000) 0338098(1-10).
[43] V.F. Kovalev, Theor. Math. Phys. 111 (1997) 686--702; V.F. Kovalev, D.V. Shirkov, J. Nonlinear Opt. Phys. Mater. 6 (1997) 443--454.
[44] Akhmanov, S. A.; Khokhlov, R. V.; Sukhorukov, A. P.: Sov. phys. JETP. 23, 1025-1033 (1966)
[45] Kovalev, V. F.: Theor. math. Phys.. 119, 719-730 (1999)
[46] Kovalev, V. F.; Shirkov, D. V.: Theor. math. Phys.. 121, 1315-1322 (1999)