×

Foliation groupoids and their cyclic homology. (English) Zbl 0989.22010

A groupoid \(G\) is a small category in which every arrow is invertible. The tangent spaces of \(s^{-1}(x)\) at \(1_x\), \(s\) being the source map relative to \(G\), constitute a bundle \({\mathfrak g}\) over the set of objects \(G_0\) of \(G\) and the differential of the target map relative to \(G\) induces a map of vector bundles \( \alpha: {\mathfrak g} \rightarrow TG_0\) called the anchor map of \(G\).
The paper is devoted to prove two results. First, one gives three equivalent statements for a smooth groupoid \(G\) which are: (1) \(G\) is Morita equivalent to a smooth étale groupoid. (2) The Lie algebroid \({\mathfrak g}\) of \(G\) has an injective anchor map. (3) All isotropy Lie groups of \(G\) are discrete.
Notice that since Lie algebroids with injective anchor map are exactly foliations, the above result asserts that a Lie groupoid is equivalent to an étale one exactly when it integrates a foliation. For this reason, the authors call these groupoids foliation groupoids.
Finally, the second result of the paper states that equivalent foliation groupoids have isomorphic Hochschild, cyclic and periodic cyclic homology groups. The proof provides explicit isomorphisms.

MSC:

22A22 Topological groupoids (including differentiable and Lie groupoids)
19D55 \(K\)-theory and homology; cyclic homology and cohomology
58H05 Pseudogroups and differentiable groupoids
57R30 Foliations in differential topology; geometric theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Atiyah, M., Elliptic operators, discrete groups and von Neumann algebras, Astérisque, 32, 43-72 (1976) · Zbl 0323.58015
[2] Brylinski, J.-L; Nistor, V., Cyclic cohomology of Etale groupoids, K-theory, 8, 341-365 (1994) · Zbl 0812.19003
[3] R. Brown, and, I. Icen, Lie local subgroupoids and their monodromy, preprint, 1998.; R. Brown, and, I. Icen, Lie local subgroupoids and their monodromy, preprint, 1998. · Zbl 1006.58016
[4] Connes, A., A survey of foliations and operator algebras, Proc. Sympos. Pure Math. (1982), Amer. Math. Soc: Amer. Math. Soc Providence, p. 521-628 · Zbl 0531.57023
[5] Connes, A.; Moscovici, H., Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology, 29, 345-388 (1990) · Zbl 0759.58047
[6] Connes, A., Noncommutative Geometry (1994), Academic Press: Academic Press San Diego · Zbl 0818.46076
[7] Crainic, M., Cyclic homology of étale groupoids: The general case, K-Theory, 17, 319-362 (1999) · Zbl 0937.19007
[8] M. Crainic, Ph.D. thesis, Utrecht University, April 2000.; M. Crainic, Ph.D. thesis, Utrecht University, April 2000.
[9] Crainic, M.; Moerdijk, I., A homology theory for étale groupoids, J. Reine Angew. Math., 521, 25-46 (2000) · Zbl 0954.22002
[10] M. Crainic, and, I. Moerdijk, A remark on sheaf theory for non-Hausdorff manifolds, Utrecht University, preprint 1119, 1999, http://www.math.uu.nl/publications/Preprints/; M. Crainic, and, I. Moerdijk, A remark on sheaf theory for non-Hausdorff manifolds, Utrecht University, preprint 1119, 1999, http://www.math.uu.nl/publications/Preprints/
[11] M. Crainic, and, I. Moerdijk, Čech-DeRham theory for leaf spaces of foliations, in preparation.; M. Crainic, and, I. Moerdijk, Čech-DeRham theory for leaf spaces of foliations, in preparation. · Zbl 1043.57012
[12] Cuntz, J., Morita invariance in cyclic homology for nonunital algebras, K-Theory, 15, 301-305 (1998) · Zbl 0920.18007
[13] Haefliger, A., Some remarks on foliations with minimal leaves, J. Differential Geometry, 15, 269-284 (1980) · Zbl 0444.57016
[14] Haefliger, A., Groupoides d’holonomie et espaces classifiants, Astérisque, 116, 70-97 (1984) · Zbl 0562.57012
[15] Heitsch, J.; Lazarov, C., A general families index theorem, K-Theory, 18, 181-202 (1999) · Zbl 0938.58021
[16] Hilsum, M.; Skandalis, G., Stabilité des algèbres de feuilletages, Ann. Inst. Fourier Grenoble, 33, 201-208 (1983) · Zbl 0505.46043
[17] Karoubi, M., Homologie cyclique et K-théorie, Asterisque, 149 (1987) · Zbl 0648.18008
[18] J.-L. Loday, Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, Vol, 301, Springer-Verlag, Berlin/New York.; J.-L. Loday, Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, Vol, 301, Springer-Verlag, Berlin/New York.
[19] Mackenzie, K., Lie Groupoids and Lie Algebroids in Differential Geometry. Lie Groupoids and Lie Algebroids in Differential Geometry, Lecture Notes Series, 124 (1987), London Mathematical Society: London Mathematical Society London · Zbl 0683.53029
[20] Mackenzie, K.; Xu, P., Integration of Lie bialgebroids, Topology, 39, 445-467 (2000) · Zbl 0961.58009
[21] Moerdijk, I., Classifying topos and foliations, Ann. Inst. Fourier. Grenoble, 41, 189-209 (1991) · Zbl 0727.57029
[22] I. Moerdijk, Etale groupoids, derived categories, and operations, Contemp. Math, in press.; I. Moerdijk, Etale groupoids, derived categories, and operations, Contemp. Math, in press. · Zbl 1043.58008
[23] I. Moerdijk, and, J. Mrcun, On integrability of infinitesimal actions, preprint math. DG/0006042.; I. Moerdijk, and, J. Mrcun, On integrability of infinitesimal actions, preprint math. DG/0006042. · Zbl 1013.58010
[24] Moore; Schochet, Global Analysis on Foliated Spaces (1988), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0648.58034
[25] Muhly, P.; Renault, J.; Williams, D., Equivalence and isomprphism for groupoid \(C\)*-algebras, J. Oper. Theory, 17, 3-22 (1987) · Zbl 0645.46040
[26] Mrcun, J., Functoriality of the bimodule associated to a Hilsum-Skandalis map, K-Theory, 18, 235-253 (1999) · Zbl 0938.22002
[27] Nistor, V., The index of operators on foliated bundles, J. Funct. Anal., 141, 421-434 (1997) · Zbl 0868.58076
[28] Nistor, V., Higher index theorems and the boundary map in cyclic cohomology, Documenta, 2, 263-295 (1997) · Zbl 0893.19002
[29] Nistor, V.; Weinstein, A.; Xu, P., Pseudodifferential operators on differential groupoids, Pacific J. Math., 189, 117-152 (1999) · Zbl 0940.58014
[30] Paterson, A., Groupoids, Inverse Semigroups, and Their Operator Algebras (1999), Birkhäuser: Birkhäuser Basel · Zbl 0913.22001
[31] Phillips, J., The holonomic imperative and the homotopy groupoid of a foliated manifold, Rocky Mountain J. Math., 17, 151-165 (1987) · Zbl 0641.57011
[32] Pradines, J., Théorie de Lie pour les groupoides différentiables. Relations entre propriétés locales et globales, C.R. Acad. Sci. Paris, 263, 907-910 (1966) · Zbl 0147.41102
[33] Renault, J., A Groupoid Approach to \(C\)*-Algebras. A Groupoid Approach to \(C\)*-Algebras, Lecture Notes in Mathematics, 793 (1980), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0433.46049
[34] Winkelnkemper, H., The graph of a foliation, Ann. Global Anal. Geom., 1, 51-75 (1983) · Zbl 0526.53039
[35] Wodzicki, M., Excision in cyclic homology and in rational algebraic \(K\)-theory, Ann. of Math., 129, 591-639 (1989) · Zbl 0689.16013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.