zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some recent results on the zeros of Bessel functions and orthogonal polynomials. (English) Zbl 0989.33004
This is a survey of the results on the zeros of Bessel functions and the classical orthogonal polynomials, obtained in the past 20 years specially by the author and specially derived from his long cooperation with A. Laforgia, M. E. Muldoon and P. Siafarikas. Section 1 of the survey is devoted to the zeros of the Bessel functions, and more generally of the cylinder functions. Standard methods of investigation of the properties of the zeros are recalled. Section 2 is concerned with the zeros of some orthogonal polynomials as Jacobi, ultraspherical and Hermite. This Section provides also information on the values of the Laguerre and Legendre polynomials. The selection of the results concentrates on those which are recent, or which have connections with results of other authors. The paper contains some relevant and interesting new results which appear here for the first time. Also open problems and conjectures are formulated.

MSC:
33C10Bessel and Airy functions, cylinder functions, ${}_0F_1$
33C45Orthogonal polynomials and functions of hypergeometric type
WorldCat.org
Full Text: DOI
References:
[1] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, 10th Edition, Dover Publications, Inc., New York, 1972. · Zbl 0543.33001
[2] Ahmed, S.; Muldoon, M. E.; Spigler, R.: Inequalities and numerical bounds for zeros of ultraspherical polynomials. SIAM J. Math. anal. 17, 1000-1007 (1986) · Zbl 0597.33012
[3] Bernstein, S.: Sur LES polynômes orthogonaux relatifs à un segment fini. J. math. 10, 219-286 (1931) · Zbl 0003.00702
[4] Bosbach, Ch.; Gawronski, W.: Strong asymptotics for Jacobi polynomials with varying weights. Methods appl. Anal. 6, 39-54 (1999) · Zbl 0931.30024
[5] Breen, S.: Uniform upper and lower bounds on the zeros of Bessel functions of the first kind. J. math. Anal. appl. 196, 1-17 (1995) · Zbl 0845.33002
[6] Dimitrov, D. K.: On a conjecture concerning monotonicity of zeros of ultraspherical polynomials. J. approx. Theory 85, 88-97 (1996) · Zbl 0857.33007
[7] Elbert, Á.: Concavity of the zeros of Bessel functions. Studia sci. Math. hungar. 12, 81-88 (1977) · Zbl 0435.33006
[8] Elbert, Á.: An approximation for the zeros of Bessel functions. Numer. math. 59, 647-657 (1991) · Zbl 0760.65020
[9] Gatteschi, Á. Elbert L.; Laforgia, A.: On the concavity of zeros of Bessel functions. Appl. anal. 16, 261-278 (1983) · Zbl 0498.33008
[10] Elbert, Á.; Kosik, P.; Laforgia, A.: Monotonicity properties of the zeros of derivative of Bessel functions. Studia sci. Math. hungar. 25, 377-385 (1990) · Zbl 0748.33002
[11] Elbert, Á.; Laforgia, A.: On the zeros of derivatives of Bessel functions. Z. angew. Math. phys. 34, 774-786 (1983) · Zbl 0549.33006
[12] Elbert, Á.; Laforgia, A.: On the square of the zeros of Bessel functions. SIAM J. Math. anal. 15, 206-212 (1984) · Zbl 0541.33001
[13] Elbert, Á.; Laforgia, A.: An asymptotic relation for the zeros of Bessel functions. J. math. Anal. appl. 98, 502-511 (1984) · Zbl 0549.33007
[14] Elbert, Á.; Laforgia, A.: On the convexity of the zeros of Bessel functions. SIAM J. Math. anal. 16, 614-619 (1985) · Zbl 0569.33005
[15] Elbert, Á.; Laforgia, A.: Further results on the zeros of Bessel functions. Analysis 5, 71-86 (1985) · Zbl 0564.33005
[16] Elbert, Á.; Laforgia, A.: Monotonicity properties of the zeros of Bessel functions. SIAM J. Math. anal. 17, 1483-1488 (1986) · Zbl 0597.33007
[17] Elbert, Á.; Laforgia, A.: Upper bounds for the zeros of ultraspherical polynomials. J. approx. Theory 61, 88-97 (1990) · Zbl 0697.33005
[18] Elbert, Á.; Laforgia, A.: Asymptotic formulas for ultraspherical polynomials pn$({\lambda})(x)$ and their zeros for large values of ${\lambda}$. Proc. A. M. S. 114, 371-377 (1992) · Zbl 0742.33009
[19] Elbert, Á.; Laforgia, A.: Interlacing properties of the zeros of Bessel functions. Atti sem. Mat. fis. Univ. modena 42, 525-529 (1994) · Zbl 0811.33003
[20] Elbert, Á.; Laforgia, A.: A lower bound for the zeros of the Bessel functions. World. sci. Ser. appl. Anal. 3, 179-185 (1994) · Zbl 0900.33008
[21] Elbert, Á.; Laforgia, A.: An inequality for Legendre polynomials. J. math. Phys. 35, 1348-1360 (1994) · Zbl 0802.33007
[22] Elbert, Á.; Laforgia, A.: An upper bound for the zeros of the derivative of Bessel functions. Rend. circ. Mat. Palermo 46, 123-130 (1997) · Zbl 0880.33003
[23] Elbert, Á.; Laforgia, A.: Asymptotic expression for the zeros of Bessel functions and of their derivative for large order. Atti sem. Mat. fis. Univ. modena 46, No. Suppl., 685-695 (1998) · Zbl 0922.41017
[24] Á. Elbert, A. Laforgia, Further results on McMahon’s asymptotic approximations, J. Phys. A 33 (2000) 6333--6341. · Zbl 0962.33005
[25] Elbert, Á.; Laforgia, A.; Rodonó, L. G.: Asymptotic for the nth-degree Laguerre polynomial evaluated at n. Numer. math. 63, 173-182 (1992) · Zbl 0757.33004
[26] Elbert, Á.; Laforgia, A.; Rodonó, L. G.: On the zeros of Jacobi polynomials. Acta math. Acad. sci. Hungar. 64, 351-359 (1994) · Zbl 0814.33006
[27] Elbert, Á.; Muldoon, M. E.: On the derivative with respect to a parameter of a zero of Sturm-Liouville function. SIAM J. Math. anal. 25, 354-364 (1994) · Zbl 0798.34039
[28] Elbert, Á.; Muldoon, M. E.: Inequalities and monotonicity properties for the zeros of Hermite functions. Proc. roy. Soc. Edinburgh 129A, 57-75 (1999) · Zbl 0944.33006
[29] Elbert, Á.; Siafarikas, P. D.: Monotonicity properties of the zeros of ultraspherical polynomials. J. approx. Theory 97, 31-39 (1999) · Zbl 0923.33004
[30] Förster, K. J.; Petras, K.: On estimates for the weights in Gaussian quadrature in the ultraspherical case. Math. comp. 55, 243-264 (1990) · Zbl 0705.65015
[31] Förster, K. J.; Petras, K.: Inequalities for the zeros of ultraspherical polynomials and Bessel functions. Z. angew. Math. mech. 73, 232-236 (1993) · Zbl 0797.33007
[32] L. Gatteschi, L. Giordano, Error bounds for McMahon’s asymptotic approximation of the zeros of Bessel functions, Integral Transforms Special Funct. 8 (1999), to appear. · Zbl 0974.33005
[33] Hethcote, H. W.: Bounds for zeros of some special functions. Proc. amer. Math. soc. 25, 72-74 (1970) · Zbl 0189.34404
[34] Ifantis, E. K.; Siafarikas, P. D.: A differential equation for the zeros of Bessel functions. Appl. anal. 20, 269-281 (1985) · Zbl 0553.33004
[35] E.K. Ifantis, P.D. Siafarikas, Differential inequalities on the greatest zero of Laguerre and Ultraspherical Polynomials, Proc. 6th Symp. on Orthogonal Polynomials and Applications, Gijon, Spain, 1989, pp. 187--197.
[36] Ifantis, E. K.; Siafarikas, P. D.: Differential inequalities for the positive zeros of Bessel functions. J. comput. Appl. math. 30, 139-143 (1990) · Zbl 0701.33004
[37] Ifantis, E. K.; Siafarikas, P. D.: A differential inequality for the positive zeros of Bessel functions. J. comput. Appl. math. 44, 115-120 (1992) · Zbl 0769.33003
[38] M.E.H. Ismail, Monotonicity of Zeros of Orthogonal Polynomials, Springer, New York, 1989, pp. 177--190. · Zbl 0698.33008
[39] Ismail, M. E. H.; Muldoon, M. E.: On the variation with respect to a parameter of zeros of Bessel and q-Bessel functions. J. math. Anal. appl. 135, 187-207 (1988) · Zbl 0651.33007
[40] Ismail, M. E. H.; Muldoon, M. E.: Bounds for the small real and purely imaginary zeros of Bessel and related functions. Meth. appl. Anal. 2, No. 1, 1-21 (1995) · Zbl 0845.33003
[41] I. Joó, Exact controllability and oscillation properties of circular membranes, Dissertation for the title doctor of science, Budapest, 1992.
[42] Joó, I.: On the control of a circular membrane. I. Acta math. Hungar. 61, 303-325 (1993) · Zbl 0790.93079
[43] Laforgia, A.: A monotonicity property for the zeros of ultraspherical polynomials. Proc. AMS 83, 757-758 (1981) · Zbl 0471.33006
[44] Laforgia, A.: Polynomes orthonaux et applications: Proceedings of the Laguerre symposium, bar-le-duc, Spain, 1984. Lecture notes in mathematics 1171 (1985)
[45] Lang, T.; Wong, R.: ”Best possible” upper bounds for the first two positive zeros of the Bessel function $J{\nu}(x)$: the infinite case. J. comput. Appl. math. 71, 311-329 (1996) · Zbl 0874.41013
[46] Lorch, L.: Some inequalities for the first positive zeros of Bessel functions. SIAM J. Math. anal. 24, 814-823 (1993) · Zbl 0773.33003
[47] Lorch, L.: The zeros of the third derivative of Bessel functions of order less than one. Methods appl. Anal. 2, 147-159 (1995) · Zbl 0843.33001
[48] Laforgia, A.; Muldoon, M. E.: Monotonicity and concavity properties of zeros of Bessel functions. J. math. Anal. appl. 98, 470-477 (1984) · Zbl 0549.33005
[49] Lorch, L.; Muldoon, M. E.; Szego, P.: Inflection points of Bessel functions of negative order. Canad. J. Math. 43, 1309-1322 (1991) · Zbl 0762.33002
[50] A. Laforgia, P. Siafarikas, Orthogonal polynomials and their applications, in: J.A. Baltzer (Ed.), IMACS Annals on Computing Appl. Math., Vol. 9, AG, Scientific Publishing Co. Basel, 1991. · Zbl 0831.33005
[51] Lorch, L.; Muldoon, M.: The real zeros of the derivatives of cylinder functions of negative order. Methods appl. Anal. 6, 317-326 (1999) · Zbl 0958.33002
[52] Lorch, L.; Uberti, R.: ”Best possible” upper bounds for the first positive zeros of Bessel functions -- the finite part. J. comput. Appl. math. 75, 249-258 (1996) · Zbl 0866.65014
[53] Moak, D. S.; Saff, E. B.; Varga, R. S.: On the zeros of Jacobi polynomials pn(${\alpha},{\beta}$)(x). Trans. amer. Math. soc. 249, 159-162 (1979) · Zbl 0414.33009
[54] Olver, F. W. J.: A further method for the evaluation of zeros of Bessel functions, and some new asymptotic expansions for zeros of functions of large order. Proc. Cambridge philos. Soc. 47, 699-712 (1951) · Zbl 0054.03301
[55] Olver, F. W. J.: Some new asymptotic expansions for Bessel functions of large orders. Proc. Cambridge philos. Soc. 48, 414-427 (1952) · Zbl 0049.32601
[56] Piessens, R.: A series expansion for the first positive zero of Bessel function. Math. comp. 42, 195-197 (1984) · Zbl 0536.33005
[57] V.P. Plagianakos, N.K. Nousis, M.N. Vrahatis, Locating and computing in parallel all the simple roots of special functions using PVM, this issue, J. Comput. Appl. Math. 133 (2001) 545--554. · Zbl 0988.65024
[58] Ricci, P. E.: Improving the asymptotics for the greatest zeros of Hermite polynomials. Comput. math. Appl. 30, 409-416 (1995) · Zbl 0834.33004
[59] G. Szego?, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, American Mathematical Society Providence, RI, 1975.
[60] Tricomi, F. G.: Sulle funzioni di Bessel di ordine e argomento pressoché uguali. Atti accad. Sci. Torino cl. Fis. mat. Nature. 83, 3-20 (1949) · Zbl 0036.03903
[61] J. van Iseghem, Padé-type approximants of e-z whose denominators are (1+z/n)n, Numer. Math. 43 (1984) 283--292. · Zbl 0514.65006
[62] Watson, G. N.: A treatise on the theory of Bessel functions. (1944) · Zbl 0063.08184