zbMATH — the first resource for mathematics

Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli. (English) Zbl 0990.11039
From the text: We prove that any ordinary symplectic separable isogeny class in the moduli space of principally polarized abelian varieties over a field of positive characteristic is dense in the Zariski topology.
Contents: Sect. 1. Strategy and methods of the proof; Sect. 2. Calculation at the 0-dimensional cusp; Sect. 3. Reduction to the Hilbert-Blumenthal case; Sect. 4. Calculation of smooth ordinary points over finite fields; Sect. 5. Inspection at the supersingular points.

11G10 Abelian varieties of dimension \(> 1\)
14K15 Arithmetic ground fields for abelian varieties
11G25 Varieties over finite and local fields
14G20 Local ground fields in algebraic geometry
14K10 Algebraic moduli of abelian varieties, classification
Full Text: DOI EuDML
[1] A. Ash, D. Mumford, M. Rapoport and Y. Tai, Smooth Compactification of Locally Symmetric Spaces, Math. Sci. Press 1975. · Zbl 0334.14007
[2] A. Borel, Properties and linear representations of Chevalley groups, Seminar on algebraic groups and related finite groups, Lecture Notes in Math. 131, 1970, pp. 1–55.
[3] C.-L. Chai, Compactification of Siegel Moduli Schemes, Lecture Notes Series 107, London Math. Soc., London, 1985. · Zbl 0578.14009
[4] C.-L. Chai, Arithmetic minimal compactification of Hilbert-Blumenthal moduli spaces, Appendix to Andrew Wiles ”The lwasawa conjecture for totally real fields. Annals of Math.131 (1990) 541–554. · Zbl 0754.14030 · doi:10.2307/1971469
[5] C.-L. Chai, The group action on the closed fiber of the Lubin-Tate moduli space, preprint 1994, to appear in Duke Math. J.
[6] P. Deligne, Variétés de Shimura: Interprétation modulair, et techniques de construction de modèles canoniques, Automorphic Forms, Representations, and L-functions (A. Borel and W. Casselman, eds.), Proc. Symp. Pure Math. 33, part 2, AMS, 1979, pp. 247–290.
[7] P. Deligne and G. Pappas, Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant. Compos. Math.90 (1994) 59–79. · Zbl 0826.14027
[8] T. Ekedahl, On supersingular curves and abelian varieties, Math. Scand60 (1987) 151–178. · Zbl 0641.14007
[9] T. Ededahl, The action of monodromy on torsion points of jacobians, Arithmetic Algebraic Geometry, Texel 1989, Eds. G. van der Geer, F. Oort, J. Steenbrink, Progress in Math. 89, Birkhäuser, 1991, pp. 41–49.
[10] T. Ekedahl and F. Oort, Connected subsets of a moduli space of abelian varieties, preprint (1994).
[11] G. Faltings, Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten, Lecture Notes in Math. 1111, Springer-Verlag, 1985, pp. 321–383.
[12] G. Faltings and C.-L. Chai, Degeneration of Abelian Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 22, Springer-Verlag, 1990. · Zbl 0744.14031
[13] B. Gross, On canonical and quasi-canonical liftings, Inven. Math.84 (1986) 321–326. · Zbl 0597.14044 · doi:10.1007/BF01388810
[14] B.H. Gross and M.J. Hopkins, Equivariant vector bundles on the Lubin-Tate moduli space, Topology and Representation Theory (Evanston, IL, 1992); Contemp. Math.158 (1994) 23–88 · Zbl 0807.14037
[15] A. Grothendieck, Groupes de Barsotti-Tate et Cristaux de Dieudonné, Les Presses de l’Université de Montréal, 1974. · Zbl 0331.14021
[16] A.J. de Jong, The moduli space of polarized abelian varieties, Math. Ann.295 (1993) 485–503. · Zbl 0839.14036 · doi:10.1007/BF01444898
[17] N.M. Katz, Travaux de Dwork, Séminaire Bourbaki 1971/72, exposé 409, Lecture Notes in Math. 317, Springer-Verlag, 1973, pp. 69–190.
[18] N.M. Katz, Serre-Tate local moduli, Séminaire de Géométrie Algébrique d’Orsay 1976–78, Expposé Vbis, Surface Algébriques, Lecture Notes in Math. 868, Springer-Verlag, 1981, pp. 138–202.
[19] N. Koblitz, P-adic variation of the zeta-function over families of varieties defined over finite fields. Compos. Math.31 (1975) 119–218. · Zbl 0332.14008
[20] R. Langlands and M. Rapoport, Shimuravarietäten und Gerben, J. reine angew. Math.378 (1987) 113–220.
[21] J. Lubin and J. Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France94 (1966) 49–60. · Zbl 0156.04105
[22] W. Messing, The Crystals Associated to Barsotti-Tate Groups: with Applications to Abelian Schemes, Lecture Notes in Math. 370, Springer-Verlag, 1972. · Zbl 0243.14013
[23] J.S. Milne, The points on a Shimura variety modulo a prime of good reduction, The Zeta Function of Picard Modular Surfaces (R. Langlands and D. Ramakrishnan, eds.), Les Publications CRM, Montréal, 1992, pp. 153–255.
[24] J.S. Milne, Shimura varieties and motives, Proc. Symp. Pure Math. (1994). · Zbl 0816.14022
[25] L. Moret-Bailly, Pinceaux de Variétés Abéliennes, Astérisque 129, Soc. Math. France, 1985.
[26] D. Mumford, Abelian Varieties, Tata Inst., Studies in Math. 5, Oxford University Press, 1974. · Zbl 0326.14012
[27] P. Norman, An algorithm for computing local moduli of abelian varieties, Ann. Math.101 (1975), 499–509. · Zbl 0309.14031 · doi:10.2307/1970937
[28] P. Norman and F. Oort, Moduli of abelian varieties, Annals of Math.112 (1980) 413–439. · Zbl 0483.14010 · doi:10.2307/1971152
[29] T. Oda and F. Oort, Supersingular abelian varieties, Proc., Kyoto Univ., Kyoto, 1977, Kinokuniya Book Store, Tokyo, 1978, pp. 595–621. · Zbl 0402.14016
[30] F. Oort, The isogeny class of a CM-type abelian variety is defined over a finite extension of the prime field, J. Pure Appl. Algebra3 (1973), 399–408. · Zbl 0272.14009 · doi:10.1016/0022-4049(73)90040-6
[31] M. Rapoport, Compactifications de l’espace de modules de Hilbert-Blumenthal, Compo. Math.36 (1978) 255–335. · Zbl 0386.14006
[32] G. Shimura, On analytic families of polarized abelian varieties and automorphic functions. Ann. of Math.78 (1963) 149–192. · Zbl 0142.05402 · doi:10.2307/1970507
[33] J. Tate, Classes d’isogeny de variétés abéliennes sur un corps fini (d’apès T. Honda), Sém. Bourbaki Exp. 352 (1968/69), Lecture Notes in Math. 179, Springer Verlag, 1971.
[34] S.P. Wang, On density properties of S-subgroups of locally compact groups, Annals of Math.94 (1971) 325–329. · Zbl 0265.22010 · doi:10.2307/1970863
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.