×

zbMATH — the first resource for mathematics

Do integrable mappings have the Painlevé property? (English) Zbl 0990.37518
Summary: We present an integrability criterion for discrete-time systems that is the equivalent of the Painlevé property for systems of a continuous variable. It is based on the observation that for integrable mappings the singularities that may appear are confined, i.e., they do not propagate indefinitely when one iterates the mapping. Using this novel criterion we show that there exists a family of nonautonomous integrable mappings which includes the discrete Painlevé equations by \(P_{\text{I}}\), recently derived in a model of two-dimensional quantum gravity, and \(P_{\text{II}}\), obtained as a similarity reduction of the integrable modified Korteweg-de Vries lattice. These systems possess Lax pairs, a well-known integrability feature.

MSC:
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
39A12 Discrete version of topics in analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. W. Nijhoff, in: Proceedings of the International Workshop on Quantum Groups, Leningrad, 1990 [Institute of Nonlinear Studies Report No. 166/90
[2] M. J. Ablowitz, Lett. Nuovo Cimento 23 pp 333– (1978) · doi:10.1007/BF02824479
[3] M. J. Ablowitz, Stud. Appl. Math. 55 pp 213– (1976) · Zbl 0338.35002 · doi:10.1002/sapm1976553213
[4] M. J. Ablowitz, Stud. Appl. Math. 57 pp 1– (1977) · Zbl 0384.35018 · doi:10.1002/sapm19775711
[5] E. Date, J. Phys. Soc. Jpn. 51 pp 4125– (1982) · doi:10.1143/JPSJ.51.4125
[6] E. Date, J. Phys. Soc. Jpn. 52 pp 388– (1983) · Zbl 0571.35105 · doi:10.1143/JPSJ.52.388
[7] E. Date, J. Phys. Soc. Jpn. 52 pp 766– (1983) · doi:10.1143/JPSJ.52.766
[8] F. W. Nijhoff, Phys. Lett. 97A pp 125– (1983) · doi:10.1016/0375-9601(83)90192-5
[9] A. P. Veselov, Funct. Anal. Appl. 22 pp 83– (1988) · Zbl 0694.58020 · doi:10.1007/BF01077598
[10] P. A. Deift, Commun. Pure Appl. Math. 42 pp 963– (1989) · Zbl 0820.58030 · doi:10.1002/cpa.3160420704
[11] Yu. B. Suris, Phys. Lett. A 145 pp 113– (1990) · doi:10.1016/0375-9601(90)90202-Y
[12] V. Papageorgiou, Phys. Lett. A 147 pp 106– (1990) · doi:10.1016/0375-9601(90)90876-P
[13] Y. F. Chang, Physica (Amsterdam) 8D pp 3183– (1983)
[14] R. Hirota, J. Phys. Soc. Jpn. 45 pp 321– (1978) · Zbl 1334.39016 · doi:10.1143/JPSJ.45.321
[15] M. Hénon, Quart. J. Appl. Math. 27 pp 291– (1969) · Zbl 0191.45403 · doi:10.1090/qam/253513
[16] E. M. McMillan, in: Topics in Modern Physics (1971)
[17] G. R. W. Quispel, Phys. Lett. A 126 pp 419– (1988) · Zbl 0679.58023 · doi:10.1016/0375-9601(88)90803-1
[18] G. R. W. Quispel, Physica (Amsterdam) 34D pp 183– (1989)
[19] R. J. Baxter, in: Exactly Solved Models in Statistical Mechanics (1982) · Zbl 0538.60093
[20] G. R. W. Quispel, Physica (Amsterdam) 125A pp 344– (1984) · Zbl 0598.45009 · doi:10.1016/0378-4371(84)90059-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.