×

zbMATH — the first resource for mathematics

The mortar finite element method for Bingham fluids. (English) Zbl 0990.76042
Summary: This paper deals with the flow problem of a viscoplastic fluid in cylindrical pipe. In order to approximate this problem governed by a variational inequality, we apply the nonconforming mortar finite element method. By using appropriate techniques, we are able to prove the convergence of the method and to obtain the same convergence rate as in the conforming case.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76A05 Non-Newtonian fluids
76M30 Variational methods applied to problems in fluid mechanics
65K10 Numerical optimization and variational techniques
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] Y. Achdou and O. Pironneau , A fast solver for Navier-Stokes equations in the laminar regime using mortar finite elements and boundary element methods . SIAM J. Numer. Anal. 32 ( 1995 ) 985 - 1016 . Zbl 0833.76032 · Zbl 0833.76032 · doi:10.1137/0732046
[2] R.A. Adams , Sobolev Spaces . Academic Press, New York ( 1975 ). MR 450957 | Zbl 0314.46030 · Zbl 0314.46030
[3] F. Ben Belgacem , The mixed mortar finite element method for the incompressible Stokes problem: Convergence analysis . SIAM J. Numer. Anal. 37 ( 2000 ) 1085 - 1100 . Zbl 0959.65126 · Zbl 0959.65126 · doi:10.1137/S0036142997329220
[4] F. Ben Belgacem , The mortar finite element method with Lagrange multipliers . Numer. Math. 84 ( 1999 ) 173 - 197 . Zbl 0944.65114 · Zbl 0944.65114 · doi:10.1007/s002110050468
[5] F. Ben Belgacem , P. Hild and P. Laborde , Extension of the mortar finite element method to a variational inequality modeling unilateral contact . Math. Models Methods Appl. Sci. 9 ( 1999 ) 287 - 303 . Zbl 0940.74056 · Zbl 0940.74056 · doi:10.1142/S0218202599000154
[6] C. Bernardi , N. Debit and Y. Maday , Coupling finite element and spectral methods: First results . Math. Comp. 54 ( 1990 ) 21 - 39 . Zbl 0685.65098 · Zbl 0685.65098 · doi:10.2307/2008680
[7] C. Bernardi and V. Girault , A Local regularisation operator for triangular and quadrilateral finite elements . SIAM J. Numer. Anal. 35 ( 1998 ) 1893 - 1916 . Zbl 0913.65007 · Zbl 0913.65007 · doi:10.1137/S0036142995293766
[8] C. Bernardi , Y. Maday and A.T. Patera , A new nonconforming approach to domain decomposition: the mortar element method , in Collège de France Seminar, H. Brezis and J.-L. Lions Eds., Pitman ( 1994 ) 13 - 51 . Zbl 0797.65094 · Zbl 0797.65094
[9] P.E. Bjørstad and O.B. Widlund , Iterative methods for the solution of elliptic problems on regions partitioned into substructures . SIAM J. Numer. Anal. 23 ( 1986 ) 1097 - 1120 . Zbl 0615.65113 · Zbl 0615.65113 · doi:10.1137/0723075
[10] H. Brezis , Monotonicity in Hilbert spaces and some applications to nonlinear partial differential equations , in Contributions to nonlinear functional analysis, E. Zarantonello Ed., Academic Press, New York ( 1971 ) 101 - 156 . MR 394323 | Zbl 0278.47033 · Zbl 0278.47033
[11] P.-G. Ciarlet , The finite element method for elliptic problems , in Handbook of numerical analysis, Vol. II, Part 1, P.-G. Ciarlet and J.-L. Lions Eds., North Holland, Amsterdam ( 1991 ) 17 - 352 . Zbl 0875.65086 · Zbl 0875.65086
[12] N. Debit , La méthode des éléments avec joints dans le cas du couplage de méthodes spectrales et méthodes d’éléments finis: résolution des équations de Navier-Stokes . Ph.D. thesis, University of Paris VI, France ( 1991 ).
[13] G. Duvaut and J.-L. Lions , Les inéquations en mécanique et en physique . Dunod, Paris ( 1972 ). Zbl 0298.73001 · Zbl 0298.73001
[14] R.S. Falk , Error estimates for the approximation of a class of variational inequalities . Math. Comp. 28 ( 1974 ) 963 - 971 . Zbl 0297.65061 · Zbl 0297.65061 · doi:10.2307/2005358
[15] R. Glowinski , Lectures on numerical methods for non-linear variational problems . Springer, Berlin ( 1980 ). Zbl 0456.65035 · Zbl 0456.65035
[16] P. Hild , Problèmes de contact unilatéral et maillages éléments finis incompatibles . Ph.D. thesis, University of Toulouse III, France ( 1998 ).
[17] J.-L. Lions and G. Stampacchia , Variational inequalities . Comm. Pure. Appl. Math. XX ( 1967 ) 493 - 519 . Zbl 0152.34601 · Zbl 0152.34601 · doi:10.1002/cpa.3160200302
[18] P.P. Mosolov and V.P. Miasnikov , Variational methods in the theory of the fluidity of a viscous-plastic medium . PPM, J. Mech. Appl. Math. 29 ( 1965 ) 545 - 577 . Zbl 0168.45505 · Zbl 0168.45505 · doi:10.1016/0021-8928(65)90063-8
[19] P.P. Mosolov and V.P. Miasnikov , On stagnant flow regions of a viscous-plastic medium in pipes . PPM, J. Mech. Appl. Math. 30 ( 1966 ) 841 - 854 . Zbl 0168.45601 · Zbl 0168.45601 · doi:10.1016/0021-8928(66)90035-9
[20] P.P. Mosolov and V.P. Miasnikov , On qualitative singularities of the flow of a viscoplastic medium in pipes . PPM, J. Mech Appl. Math. 31 ( 1967 ) 609 - 613 . Zbl 0236.76006 · Zbl 0236.76006 · doi:10.1016/0021-8928(67)90055-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.