zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An enhanced rostering model for airline crews. (English) Zbl 0990.90062
Summary: This paper introduces an efficient adaptation of the branch-and-bound technique that solves real-world rostering problems for airline crews. The efficiency of the algorithm is based on the exploitation of rostering-specific properties (e.g. variable selection, branching strategy and cutting-planes). This approach shortens the solution process and outperforms standard techniques. Furthermore, we formally introduce a general concept of downgrading that makes it possible to solve certain rostering problems that might otherwise have no solution. This paper also computes a sample monthly schedule on the basis of a medium-sized European airline’s real data.

90B80Discrete location and assignment
90B35Scheduling theory, deterministic
90C57Polyhedral combinatorics, branch-and-bound, branch-and-cut
Full Text: DOI
[1] Barnhart C, Talluri KT. Airlines operations research. In: McGarity AE, ReVelle C, editors. Design and operation of civil and environmental engineering systems. New York: Wiley, 1997. p. 435--469.
[2] Gopalan R, Talluri KT. Mathematical models in airline schedule planning: a survey. In: Burkard RE, Ibaraki T, Pulleyblank WR, editors. Mathematics of industrial systems, Vol. III; Annals of Operations Research 1998;76:155--85.
[3] Hane, C. A.; Barnhart, C.; Johnson, E. J.; Marsten, R. E.; Nemhauser, G. L.; Sigismondi, G.: The fleet assignment problem: solving a large-scale integer program. Mathematical programming 70, 211-232 (1995) · Zbl 0840.90104
[4] Gopalan, R.; Talluri, K. T.: The aircraft maintenance routing problem. Operations research 46, 260-271 (1998) · Zbl 0987.90521
[5] Barnhart C, Johnson EL, Nemhauser GL, Vance PH. Airline crew scheduling. In: Hall RW, editors. Handbook of transportation. Boston: Kluwer, in preparation. · Zbl 0891.90087
[6] Anbil R, Barnhart C, Hatay L, Johnson EL, Ramakrishnan VS. Crew-pairing optimization at American airlines decision technologies. In: Cirani TA, Leachman RC, editors. Optimization in industry. Chichester: Wiley, 1993. p. 31--36.
[7] Hoffman, K. L.; Padberg, M.: Solving airline crew-scheduling problems by branch-and-cut. Management science 39, 657-682 (1993) · Zbl 0783.90051
[8] Vance, P. H.; Barnhart, C.; Johnson, E. L.; Nemhauser, G. L.: Airline crew scheduling: a new formulation and decomposition algorithm. Operations research 45, 188-200 (1996) · Zbl 0891.90087
[9] Song M, Wei G, Yu G. A decision support framework for crew management during airline irregular operations. In: Yu G, editors. Operations research in the airline industry. Boston: Kluwer, 1998. p. 259--86.
[10] Desaulniers, G.; Desrosiers, J.; Dumas, Y.; Marc, S.; Rioux, B.; Solomon, M. M.; Soumis, F.: Crew pairing at air France. European journal of operational research 97, 245-259 (1997) · Zbl 0944.90040
[11] Barnhart C, Johnson EL, Anbil R, Hatay L. A column generation technique for the long-haul crew assignment problem. In: Cirani TA, Leachman RC, editors. Optimization in industry. Vol. 2. Chichester: Wiley, 1994. p. 7--23. · Zbl 0862.90077
[12] Jarrah, A. I. Z.; Diamond, Z.: The problem of generating crew bidlines. Interfaces 27, 49-64 (1997)
[13] Ryan, D. M.: The solution of massive generalized set partitioning problems in aircrew rostering. Journal of the operational research society 43, 459-467 (1992)
[14] Wren A. Scheduling, timetabling and rostering -- a special relationship? In: Goos G, Hartmanis J, van Leeuven J, editors. Practice and theory of automated timetabling. Berlin: Springer, 1996. p. 46--75.
[15] Gamache M, Soumis F. A method for optimally solving the rostering problem. In: Yu G, editor. Operations research in the airline industry. Boston: Kluwer, 1998. p. 124--57.
[16] Gamache, M.; Soumis, F.; Villeneuve, D.: The preferential bidding system at air Canada. Transportation science 32, 246-255 (1998) · Zbl 1004.90518
[17] Bianco, L.; Bielli, M.; Mingozzi, A.; Ricciardelli, S.; Spadoni, M.: A heuristic procedure for the crew rostering problem. European journal of operational research 58, 272-283 (1992) · Zbl 0767.90032
[18] Wren, A.; Wren, D. O.: A genetic algorithm for public transport driver scheduling. Computers and operations research 22, 101-110 (1995) · Zbl 0812.90045
[19] Davis, M.; Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201-215 (1960) · Zbl 0212.34203
[20] Barth, P.: Logic-based 0--1 constraint programming. (1996) · Zbl 0851.68010
[21] Gamache, M.; Soumis, F.; Marquis, G.; Desrosiers, J.: A column generation approach for large-scale aircrew rostering problems. Operations research 47, 247-263 (1999) · Zbl 1041.90513