Petrovskii, S. V.; Malchow, Horst A minimal model of pattern formation in a prey-predator system. (English) Zbl 0990.92040 Math. Comput. Modelling 29, No. 8, 49-63 (1999). Summary: The spatio-temporal dynamics of a prey-predator community is described by two reaction-diffusion equations. It is shown that for a class of initial conditions the spatio-temporal system dynamics resembles a “phase transition” between a regular and an irregular phase, separated by a moving boundary. A simple approach to specify spatio-temporal chaos is proposed. Cited in 73 Documents MSC: 92D40 Ecology 35K57 Reaction-diffusion equations 37N25 Dynamical systems in biology PDF BibTeX XML Cite \textit{S. V. Petrovskii} and \textit{H. Malchow}, Math. Comput. Modelling 29, No. 8, 49--63 (1999; Zbl 0990.92040) Full Text: DOI References: [1] Turing, A. M., On the chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond., B 237, 37-72 (1952) · Zbl 1403.92034 [2] Segel, L. A.; Jackson, J. L., Dissipative structure: An explanation and an ecological example, J. Theor. Biol., 37, 545-559 (1972) [3] Malchow, M., Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics, (Proc. R. Soc. Lond., B 251 (1993)), 103-109 [4] Wroblewski, J. S.; O’Brien, J. J., A spatial model of plankton patchiness, Marine Biology, 35, 161-176 (1976) [5] Vastano, J. A.; Pearson, J. E.; Horsthemke, W.; Swinney, H. L., Chemical pattern formation with equal diffusion coefficients, Phys. Lett., A 124, 320-324 (1987) [6] Barenblatt, G. I.; Vinogradov, M. E.; Gorbunov, A. E.; Petrovskii, S. V., Modeling impact waves in complex ecological systems, Oceanology, 33, 5-12 (1993) [7] Pascual, M., Diffusion-induced chaos in a spatial predator-prey system, (Proc. R. Soc. Lond., B 251 (1993)), 1-7 [8] Sherratt, J. A.; Lewis, M. A.; Fowler, A. C., Ecological chaos in the wake of invasion, (Proc. Natl. Acad. Sci. USA, 92 (1995)), 2524-2528 · Zbl 0819.92024 [9] Lewis, M. A., A tale of two tails: The mathematical links between dispersal, patchiness and variability in a biological invasion, (Abstracts of the \(3^{rd}\) European Conf. on Math, in Biology and Medicine. Abstracts of the \(3^{rd}\) European Conf. on Math, in Biology and Medicine, Heidelberg (1996)) [10] Murray, J. D., Mathematical Biology (1989), Springer-Verlag: Springer-Verlag Berlin · Zbl 0682.92001 [11] Shigesada, N.; Kawasaki, K., Biological Invasions: Theory and practice (1997), Oxford University Press: Oxford University Press Oxford [13] Vandenhouten, R.; Goebbels, G.; Rasche, M.; Tegtmeier, H., (SANTIS—A Tool for Signal Analysis and Time Series Processing, Version 1.1. User Manual (1996), Institute of Physiology: Institute of Physiology RWTH Aachen) [14] Shibata, H., Quantitative characterization of spatiotemporal chaos, Physica A, 252, 428-449 (1998) [15] Sherratt, J. A.; Eagan, B. T.; Lewis, M. A., Oscillations and chaos behind predator-prey invasion: Mathematical artifact or ecological reality?, Phil. Trans. R. Soc. Lond. B, 352, 21-38 (1997) [16] Vinogradov, M. E., Open-ocean ecosystems, (Kinne, O., Marine Ecology, Volume 5 (1983), John Wiley: John Wiley New York), Part 2 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.