Existence and uniqueness of positive solutions for some quasilinear elliptic problems. (English) Zbl 0991.35035

Let \(\Omega\subset R^d\) be a smooth bounded domain and \(1<p<d\). Let \(\Delta_p\) denote the \(p\)-Laplacian, that is \(\Delta_p u=\text{div} (|\nabla u|^{p-2} \nabla u)\) and \(f:\Omega \times R\to R\) is a Carathéodory function. The authors study the quasilinear boundary value problem \[ \begin{cases} -\Delta_pu= f(x,u)\quad &\text{in }\Omega\\ u=0\quad &\text{on } \partial \Omega\end{cases} \tag{*} \] and present a rather general version of the method of sub- and supersolutions for (*) with sublinear terms. Moreover the authors give several applications to sublinear problems.


35J65 Nonlinear boundary value problems for linear elliptic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
Full Text: DOI


[1] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM rev., 18, 620-709, (1976) · Zbl 0345.47044
[2] A. Ambrosetti, G. Prodi, A Primer of Nonlinear Analysis, Cambridge University Press, Cambridge, 1993. · Zbl 0781.47046
[3] Anane, A., Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C.R. acad. sci. Paris Sér. I math., 305, 725-728, (1987) · Zbl 0633.35061
[4] Boccardo, L.; Orsina, L., Sublinear elliptic equations in Ls, Houston, math. J., 20, 99-114, (1994) · Zbl 0803.35047
[5] Brezis, H.; Browder, F., Some properties of higher order Sobolev spaces, J. math. pures appl., 61, 245-259, (1982) · Zbl 0512.46034
[6] Brezis, H.; Oswald, L., Remarks on sublinear elliptic equations, Nonlinear anal., 10, 55-64, (1986) · Zbl 0593.35045
[7] Brown, K.; Hess, P., Stability and uniqueness of positive solutions for a semi-linear elliptic boundary value problem, Differential integral equations., 3, 201-207, (1990) · Zbl 0729.35046
[8] M. Cuesta, Existence results for quasilinear problems via ordered sub and supersolutions, Ann. Fac. Sciences Toulouse, in press. · Zbl 0910.35055
[9] Dancer, E.N.; Sweers, G.S., On the existence of a maximal weak solution for a semilinear elliptic equation, Differential integral equations, 2, 533-540, (1989) · Zbl 0732.35027
[10] Deuel, J.; Hess, P., Criterion for the existence of solutions of nonlinear elliptic boundary value problems, Proc. roy. soc. Edinburgh, 74A, 49-54, (1975) · Zbl 0331.35028
[11] J.I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, Boston, Pitman, 1985. · Zbl 0595.35100
[12] J.I. Diaz, J. Hernández, in preparation.
[13] Diaz, J.I.; Saa, J.E., Existence et unicité de solutions positives pur certaines équations elliptiques quasilinéaires, Comptes rendus acad. sci. Paris, 305, 521-524, (1987) · Zbl 0656.35039
[14] P. Drábek, A. Kufner, F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, de Gruyter Series in Nonlinear Analysis and Applications, Vol. 5, Berlin, New York, 1997.
[15] J. Fleckinger, J. Hernández, P. Takáč, F. de Thélin, Uniqueness and positivity for solutions of equations with the p-Laplacian, in: G. Caristi, E. Mitidieri (Eds.), Reaction Diffusion Systems, Marcel Dekker, New York, 1998, pp. 141-155.
[16] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, Heidelberg, New York, 1977. · Zbl 0361.35003
[17] J. Hernández, Positive solutions for the logistic equations with unbounded weights, in: G. Caristi, E. Mitidieri (Eds.), Reaction Diffusion Systems, Marcel Dekker, New York, 1998, pp. 183-197.
[18] J. Hernández, F. Mancelo, J.M. Vega de Prada, On the linearization of some singular nonlinear elliptic problems and applications, in preparation.
[19] M. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, London, 1964.
[20] Lindqvist, P., On the equation div (|∇ u|p−2 ∇ u) + λ |u|p−2u = 0, Proc. amer. math. soc., 109, 157-164, (1990) · Zbl 0714.35029
[21] J.L. Lions, E. Magenes, Problémes aux Limites non Homogènes et Applications, Vol.1, Dunod, Paris, 1968.
[22] Vázquez, J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. math. optim., 12, 191-202, (1984) · Zbl 0561.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.