×

zbMATH — the first resource for mathematics

Local variational differential operators in field theory. (English. Russian original) Zbl 0991.81076
Theor. Math. Phys. 120, No. 2, 1026-1044 (1999); translation from Teor. Mat. Fiz. 120, No. 2, 256-276 (1999).
Summary: We develop a new calculus for local variational differential operators where the action of higher-order operators on local functionals does not lead to indefinite quantities like \(\delta(0)\). We apply this formalism to the Batalin-Vilkovisky formulation of local general gauge field theory and to its \(Sp(2)\)-symmetrical generalization. Its relation to a semiclassical expansion is also discussed.
MSC:
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] I. A. Batalin and G. A. Vilkovisky,Phys. Lett. B,102, 27 (1981).
[2] G. Leibbrandt,Rev. Mod. Phys.,47, 847 (1975).
[3] I. A. Batalin and I. V. Tyutin,Theor. Math. Phys.,114, 198 (1998). · Zbl 1024.81044
[4] N. N. Bogoliubov and D. V. Shirkov,Introduction to the Theory of Quantum Fields [in Russian], Nauka, Moscow (1976); English transl. prev. ed., Wiley, New York (1959).
[5] M. A. Neimark,Theory of Group Representations [in Russian], Nauka, Moscow (1976); English transl., Springer, Berlin (1982).
[6] G. Barnich, F. Brandt, and M. Henneaux,Commun. Math. Phys.,174, 57 (1995). · Zbl 0844.53059
[7] P. M. Lavrov and I. V. Tyutin,Izv. Vyssh. Uchebn. Zaved. Ser. Fiz.,7, 64 (1982);Sov. J. Nucl. Phys.,41, 1049 (1985).
[8] I. A. Batalin, P. M. Lavrov, and I. V. Tyutin,J. Math. Phys. 31, 1487 (1990). · Zbl 0716.58035
[9] I. V. Tyutin and Sh. S. Shakhverdiev,Theor. Math. Phys.,115, 658 (1998). · Zbl 0991.81116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.