zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The role of synchronization in digital communications using chaos. II: Chaotic modulation and chaotic synchronization. (English) Zbl 0991.93097
Summary: In a digital communications system, data are transmitted from one location to another by mapping bit sequences to symbols, and symbols to sample functions of analog waveforms. The analog waveform passes through a bandlimited (possibly time-varying) analog channel, where the signal is distorted and noise is added. In a conventional system the analog sample functions sent through the channel are weighted sums of one or more sinusoids; in a chaotic communications system the sample functions are segments of chaotic waveforms. At the receiver, the symbol may be recovered by means of coherent detection, where all possible sample functions are known, or by noncoherent detection, where one or more charactcristics of the sample functions are estimated. In a coherent receiver, synchronization is the most commonly used technique for recovering the sample functions from the received waveform. These sample functions are then used as reference signals for a correlator. Synchronization-based coherent receivers have advantages over noncoherent receivers in terms of noise performance, bandwidth efficiency (in narrow-band systems) and/or data rate (in chaotic systems). These advantages are lost if synchronization cannot be maintained, for example, under poor propagation conditions. In these circumstances, communication without synchronization may be preferable. In Part I [cf. ibid. 44, 927-936 (1997)] the theory and operation of conventional communications systems were surveyed and possible fields of application of chaotic communications were identified. In Part II, the theory of conventional telecommunications is extended to chaotic communications, chaotic modulation techniques and receiver configurations are surveyed, and chaotic synchronization schemes are described. In Part III [ibid. 47, 1673-1683 (2000; Zbl 0990.94002)], examples are given of chaotic communications schemes with and without synchronization, and the performance of these schemes is evaluated in the context of noisy, bandlimited channels.

MSC:
93D15Stabilization of systems by feedback
94A05Communication theory
94A12Signal theory (characterization, reconstruction, filtering, etc.)
WorldCat.org
Full Text: DOI