zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Construction of solitary wave solutions and rational solutions for the KdV equation by Adomian decomposition method. (English) Zbl 0992.35092
Summary: We propose a reliable algorithm to develop exact and approximate solutions for the nonlinear dispersive KdV equation with initial profile. The approach rests mainly on Adomian decomposition method. The single soliton, the two-soliton and rational solutions are obtained by this method. Numerical examples are tested to illustrate the pertinent feature of the proposed algorithm.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35C05Solutions of PDE in closed form
35A25Other special methods (PDE)
37K40Soliton theory, asymptotic behavior of solutions
WorldCat.org
Full Text: DOI
References:
[1] Ablowitz, M.; Segur, H.: Solitons and the inverse scattering transform. (1981) · Zbl 0472.35002
[2] Ablowitz, M. J.; Clarkson, P. A.: Solitons, nonlinear evolution equations and inverse scattering. (1991) · Zbl 0762.35001
[3] Ablowitz, M. J.; Fuchssteiner, B.; Kruskal, M.: Topics in soliton theory and exactly solvable nonlinear equations. (1987) · Zbl 0721.00016
[4] Andreev, V. K.; Kaptsov, O. V.; Pukhnachov, V. V.; Rodionov, A. A.: Applications of group-theoretical methods in hydrodynamics. (1998) · Zbl 0912.35001
[5] Bhatnagar, P. L.: Nonlinear waves in one-dimensional dispersive systems. (1976) · Zbl 0487.35001
[6] Bratsos, A. G.: The solution of the Boussinesq equation using the method of lines. Comput. methods appl. Mech. engrg. 157, 33-44 (1998) · Zbl 0952.76068
[7] Debnath, L.: Nonlinear partial differential equations for scientists and engineers. (1998) · Zbl 1069.35001
[8] Debnath, L.: Nonlinear water waves. (1994) · Zbl 0793.76001
[9] Drazin, P. G.; Johnson, R. S.: Solitons: an introduction. (1993) · Zbl 0661.35001
[10] Freeman, N. C.: Soliton interactions in two dimensions. Adv. appl. Mech. 20, 1-37 (1980) · Zbl 0477.35077
[11] Freeman, N. C.: Soliton solutions of non-linear evolution equations. IMA J. Appl. math. 32, 125-145 (1984) · Zbl 0542.35079
[12] Hirota, R.: Direct methods in soliton theory. Solitons (1980)
[13] Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave. J. math. Phys. 14, No. 7, 805-809 (1973) · Zbl 0257.35052
[14] Hirota, R.: Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. J. math. Phys. 14, No. 7, 810-814 (1973) · Zbl 0261.76008
[15] Kadomtsev, B. B.; Petviashvili, V. I.: On the stability of solitary waves in weakly dispersive media. Soviet. phys. 15, No. 6, 539-541 (1970) · Zbl 0217.25004
[16] Kaptsov, O. V.: Construction of exact solutions of the bousseniseq equation. J. appl. Mech. technical phys. 39, No. 3, 389-392 (1998) · Zbl 0938.76013
[17] Kenig, C. E.; Ponce, G.; Vega, L.: Global solutions for the KdV equation with unbounded data. J. differential equations 139, 339-364 (1997) · Zbl 0886.35133
[18] Knobel, R.: An introduction to the mathematical theory of waves. (2000) · Zbl 0933.35002
[19] Lamb, G. L.: Elements of soliton theory. (1980) · Zbl 0445.35001
[20] Lax, P. D.: A Hamiltonian approach to the KdV and other equations. Nonlinear evolution equations, 207-224 (1978)
[21] Lax, P. D.: Periodic solutions of the kortweg--de Vries equation. Comm. pure. Appl. math. 28, 141-188 (1975) · Zbl 0295.35004
[22] Nimmo, J. J. C.; Freeman, N. C.: A method of obtaining the N-soliton solutions of the Boussinesq equation in terms of a Wronskian. Phys. lett. 95A, 4-6 (1983) · Zbl 0588.35077
[23] Nimmo, J. J. C.; Freeman, N. C.: The use of Bäcklund transformations in obtaining the N-soliton solutions in Wronskian form. J. phys. A 17, 1415-1424 (1984) · Zbl 0552.35071
[24] Rosenau, P.; Hyman, J. M.: Compactons: solitons with finite wavelengths. Phys. rev. Lett. 70, No. 5, 564-567 (1993) · Zbl 0952.35502
[25] Rosenau, P.: On nonanalytic solitary waves formed by a nonlinear dispersion. Phys. rev. Lett. A 230, No. 5/6, 305-318 (1997) · Zbl 1052.35511
[26] Whitham, G. B.: Linear and nonlinear waves. (1974) · Zbl 0373.76001
[27] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[28] Adomian, G.: A review of the decomposition method in applied mathematics. J. math. Anal. appl. 135, 501-544 (1988) · Zbl 0671.34053
[29] Wazwaz, A. M.: A first course in integral equations. (1997) · Zbl 0924.45001
[30] Wazwaz, A. M.: Analytical approximations and Padé approximants for Volterra’s population model. Appl. math. Comput. 100, 13-25 (1999) · Zbl 0953.92026
[31] Wazwaz, A. M.: A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. math. Comput. 111, 53-69 (2000) · Zbl 1023.65108
[32] Wazwaz, A. M.: The modified decomposition method and Padé approximants for solving the Thomas--Fermi equation. Appl. math. Comput. 105, 11-19 (1999) · Zbl 0956.65064