×

Precise counting results for closed orbits of Anosov flows. (English) Zbl 0992.37026

The author studies the problem of counting closed geodesics on a negatively curved surface \(S\) according to their length and under the following homological constraint: Let \(\xi\in H_1(S,\mathbb{R})\), \(\alpha\in H_1 (S,\mathbb{Z})\) be fixed homology classes, let \(\delta>0\) and for \(T>0\) define \(\pi (\xi,\alpha, \delta,T)\) to be the number of closed geodesics \(\gamma\) of length \(\ell(\gamma) \in[T,T+ \delta]\) on \(S\) and such that the integer part \([\gamma]\) of the homology class of \(\gamma\) equals \(\alpha+ [T\xi]\). The main result of the paper is a full asymptotic expansion for the function \(\pi(\xi, \alpha,\delta,T)\) as \(T\to\infty\).
The leading term of this expansion was given earlier by M. Babillot and F. Ledrappier [Ergodic Theory Dyn. Syst. 18, 17-39 (1998; Zbl 0915.58074)]. The nontrivial case is when the class \(\xi\) is contained in the interior of the compact convex subset \(C\) of \(H_1(S,\mathbb{R})\) which is defined via integration of closed 1-forms with respect to the Borel probability measures on the unit tangent bundle \(T^1S\) of \(S\) which are invariant under the geodesic flow. There is a natural analytic function \(H\) on \(C\) which assigns to a class \(\xi\) the supremum of the measure theoretic entropies of all measures defining \(\xi\). The leading term of the expansion for \(\pi(\xi, \alpha,\delta,T)\) whenever \(\xi\in\overset \circ C\) is then given in terms of exponentials of \(H\) and its derivatives.
The present paper determines in a similar way the other terms of the expansion. The main tool is the use of transfer operators to study the Fourier-Laplace transform of the function \(\pi\). The author then uses as the major new ingredient a recent spectral theorem of D. Dolgopyat [Ann. Math. (2) 147, 357-390 (1998; Zbl 0911.58029)]. The details of the argument are rather subtle.

MSC:

37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] T. ADACHI and T. SUNADA , Homology of closed geodesics in a negatively curved manifold , J. Differential Geom. 26 ( 1987 ) 81-99. MR 88g:58149 | Zbl 0618.58028 · Zbl 0618.58028
[2] D.V. ANOSOV , Geodesic flows on closed Riemann manifolds with negative curvature , Proc. Stekl. Inst. of Math. 90 ( 1969 ). MR 39 #3527 | Zbl 0176.19101 · Zbl 0176.19101
[3] V. BANGERT , Minimal geodesics , Ergodic Theory Dynamical Systems 10 ( 1989 ) 263-286. MR 91j:58126 | Zbl 0676.53055 · Zbl 0676.53055 · doi:10.1017/S014338570000554X
[4] M. BABILLOT and F. LEDRAPPIER , Lalley’s theorem on periodic orbits of hyperbolic flows , Ergodic Theory Dynamical Systems 18 ( 1998 ) 17-39. MR 99a:58128 | Zbl 0915.58074 · Zbl 0915.58074 · doi:10.1017/S0143385798100330
[5] R. BOWEN , Symbolic dynamics for hyperbolic flows , Amer. J. Math. 95 ( 1973 ) 429-460. MR 49 #4041 | Zbl 0282.58009 · Zbl 0282.58009 · doi:10.2307/2373793
[6] N. CHERNOV , Markov approximations and decay of correlations for Anosov flows , Ann. of Math. (to appear). Zbl 0911.58028 · Zbl 0911.58028 · doi:10.2307/121010
[7] E.T. COPSON , Asymptotic Expansions , Cambridge University Press, 1965 . MR 29 #6234 | Zbl 0123.26001 · Zbl 0123.26001
[8] D. DOLGOPYAT , On decay of correlations in Anosov flows , Ann. of Math. (to appear). Zbl 0911.58029 · Zbl 0911.58029 · doi:10.2307/121012
[9] B. HASSELBLATT , Regularity of the Anosov splitting and of horospheric foliations , Ergodic Theory Dynamical Systems 14 ( 1994 ) 645-666. MR 95j:58130 | Zbl 0821.58032 · Zbl 0821.58032 · doi:10.1017/S0143385700008105
[10] H. HUBER , Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen (I) , Math. Ann. 138 ( 1959 ) 1-26 ; (II), Math. Ann. 142 ( 1961 ) 385-398 ; (III), Math. Ann. 143 ( 1961 ) 463-464. MR 27 #4923 | Zbl 0101.05702 · Zbl 0101.05702 · doi:10.1007/BF01470758
[11] L. HORMANDER , The Analysis of Partial Differential Operators , A series of comprehensive studies in mathematics, Vol. 256, Springer, Berlin, 1983 . MR 85g:35002a | Zbl 0521.35001 · Zbl 0521.35001
[12] A. KATSUDA and T. SUNADA , Homology and closed geodesics in a compact Riemann surface , Amer. J. Math. 110 ( 1988 ) 145-156. MR 89e:58093 | Zbl 0647.53036 · Zbl 0647.53036 · doi:10.2307/2374542
[13] A. KATSUDA and T. SUNADA , Closed orbits in homology classes , Publ. Math. IHES 71 ( 1990 ) 5-32. Numdam | MR 92m:58102 | Zbl 0728.58026 · Zbl 0728.58026 · doi:10.1007/BF02699875
[14] Y. KIFER , Large deviations, averaging and periodic orbits of dynamical systems , Comm. Math. Phys. 162 ( 1994 ) 33-46. Article | MR 95b:58091 | Zbl 0797.58068 · Zbl 0797.58068 · doi:10.1007/BF02105185
[15] S. LALLEY , Distribution of periodic orbits of symbolic and Axiom A flows , Adv. Appl. Math. 8 ( 1987 ) 154-193. MR 89e:58088 | Zbl 0637.58013 · Zbl 0637.58013 · doi:10.1016/0196-8858(87)90012-1
[16] S. LALLEY , Closed geodesics in homology classes on surfaces of variable negative curvature , Duke Math. J. 58 ( 1989 ) 795-821. Article | MR 91a:58143 | Zbl 0732.53035 · Zbl 0732.53035 · doi:10.1215/S0012-7094-89-05837-7
[17] B. MARCUS , Unique ergodicity of some flows related to Axiom A diffeomorphisms , Israel J. Math. 21 ( 1975 ) 111-132. MR 54 #1302 | Zbl 0314.58012 · Zbl 0314.58012 · doi:10.1007/BF02760790
[18] G. MARGULIS , Applications of ergodic theory for the investigation of manifolds of negative curvature , Funct. Anal. Appl. 3 ( 1969 ) 335-336. MR 41 #2582 | Zbl 0207.20305 · Zbl 0207.20305 · doi:10.1007/BF01076325
[19] W. PARRY and M. POLLICOTT , Zeta functions and the periodic orbit structure of hyperbolics dynamics , Astrisque 187-188 ( 1990 ). MR 92f:58141 | Zbl 0726.58003 · Zbl 0726.58003
[20] R. PHILLIPS and P. SARNAK , Geodesics in homology classes , Duke Math. J. 55 ( 1987 ), 287-297. Article | MR 88g:58151 | Zbl 0642.53050 · Zbl 0642.53050 · doi:10.1215/S0012-7094-87-05515-3
[21] M. POLLICOTT , Homology and closed geodesics in a compact negatively curved surface , Amer. J. Math. 113 ( 1991 ) 379-385. MR 92e:58158 | Zbl 0728.53031 · Zbl 0728.53031 · doi:10.2307/2374830
[22] M. POLLICOTT and R. SHARP , Error terms for growth functions on negatively curved surfaces , Amer. J. Math. (to appear). · Zbl 0999.37010 · doi:10.1353/ajm.1998.0041
[23] M. POLLICOTT and R. SHARP , Asymptotic expansions for closed orbits in homology classes , Preprint. · Zbl 1049.37021
[24] M. RATNER , Markov partitions for Anosov flows on n-dimensional manifolds , Israel J. Math. 15 ( 1973 ) 92-114. MR 49 #4042 | Zbl 0269.58010 · Zbl 0269.58010 · doi:10.1007/BF02771776
[25] R.T. ROCKAFELLAR , Convex Analysis , Princeton University Press, 1970 . MR 43 #445 | Zbl 0193.18401 · Zbl 0193.18401
[26] D. RUELLE , An extension of the theory of Fredholm determinants , Publ. Math. IHES 72 ( 1990 ) 175-193. Numdam | MR 92b:58187 | Zbl 0732.47003 · Zbl 0732.47003 · doi:10.1007/BF02699133
[27] S. SCHWARTZMANN , Asymptotic cycles , Ann. of Math. 66 ( 1957 ) 270-284. MR 19,568i | Zbl 0207.22603 · Zbl 0207.22603 · doi:10.2307/1969999
[28] R. SHARP , Prime orbits theorems with multi-dimensional constraints for Axiom A flows , Mh. Math. 114 ( 1992 ) 261-304. MR 94i:58163 | Zbl 0765.58025 · Zbl 0765.58025 · doi:10.1007/BF01299384
[29] R. SHARP , Closed orbits in homology classes for Anosov flows , Ergodic Theory Dynamical Systems 13 ( 1993 ) 387-408. MR 94g:58169 | Zbl 0783.58059 · Zbl 0783.58059 · doi:10.1017/S0143385700007434
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.