Reyes, Enrique G. Conservation laws and Calapso-Guichard deformations of equations describing pseudo-spherical surfaces. (English) Zbl 0992.53005 J. Math. Phys. 41, No. 5, 2968-2989 (2000). From author’s abstract: The relation between the Chern and Tenenblat approach to conservation laws of equations describing pseudo-spherical surfaces (conservation laws obtained from pseudo-spherical structure) and the more familiar “Riccati equation” approach (conservation laws obtained from associated linear problem) is investigated. Two examples (cylindrical Korteweg-de Vries (KdV) and Lund-Regge equations) are presented. Chern and Tenenblat’s point of view is then connected with the theory of soliton surfaces. A generalization of the original Chern-Tenenblat construction of conservation law-results and a reasonable family of large deformations for scalar equations describing pseudo-spherical surfaces, the “equations describing Calapso-Guichard surfaces”, can be introduced. It is shown that these equations are also the integrability conditions of linear problems. Reviewer: Raul Ibáñez (Bilbao) Cited in 13 Documents MSC: 53A05 Surfaces in Euclidean and related spaces 37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry 35L65 Hyperbolic conservation laws 37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems 35Q53 KdV equations (Korteweg-de Vries equations) Keywords:conservation laws; Riccati equation; pseudo-spherical surfaces; soliton surfaces PDF BibTeX XML Cite \textit{E. G. Reyes}, J. Math. Phys. 41, No. 5, 2968--2989 (2000; Zbl 0992.53005) Full Text: DOI References: [1] DOI: 10.1002/sapm198674155 · Zbl 0605.35080 [2] DOI: 10.1016/0550-3213(79)90517-0 [3] DOI: 10.1006/jdeq.1998.3617 [4] DOI: 10.1006/jdeq.1998.3617 [5] DOI: 10.1063/1.528020 · Zbl 0695.35038 [6] DOI: 10.1143/PTP.53.419 · Zbl 1079.35506 [7] DOI: 10.1088/0031-8949/40/6/003 · Zbl 1063.35549 [8] J. Krasil’shchik and A. Verbovetsky, ”Homological Methods in Equations of Mathematical Physics,” lectures given in August 1998 at the Diffiety Institute International Summer School, Levoča, Slovakia, preprint DIPS 7/98, math.DG/9808130 (1998). [9] DOI: 10.1063/1.525079 · Zbl 0471.35071 [10] DOI: 10.1006/jdeq.1995.1005 · Zbl 0815.35036 [11] Alekseev A. A., Teoret. Mat. Fiz. 91 pp 30– (1992) [12] DOI: 10.1103/PhysRevD.14.1524 · Zbl 0996.81509 [13] DOI: 10.1016/0003-4916(78)90156-2 · Zbl 0394.53016 [14] DOI: 10.1007/BF02763081 [15] DOI: 10.1016/0375-9601(81)90924-5 [16] DOI: 10.1103/PhysRevD.15.1540 [17] DOI: 10.1216/RMJ-1980-10-1-105 · Zbl 0407.53002 [18] DOI: 10.1007/BF01624787 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.