Mathematical analysis of delay differential equation models of HIV-1 infection. (English) Zbl 0992.92035

Summary: Models of HIV-1 infection that include intracellular delays are more accurate representations of the biology and change the estimated values of kinetic parameters when compared to models without delays. We develop and analyze a set of models that include intracellular delays, combination antiretroviral therapy, and the dynamics of both infected and uninfected T cells. We show that when the drug efficacy is less than perfect the estimated value of the loss rate of productively infected T cells, \(\delta\), is increased when data is fit with delay models compared to the values estimated with a non-delay model. We provide a mathematical justification for this increased value of \(\delta\). We also provide some general results on the stability of non-linear delay differential equation infection models.


92C60 Medical epidemiology
34K20 Stability theory of functional-differential equations
92C50 Medical applications (general)
92D30 Epidemiology
Full Text: DOI


[1] Ho, D.; Neumann, A.; Perelson, A.; Chen, W.; Leonard, J.; Markowitz, M., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 123, (1995)
[2] Wei, X.; Ghosh, S.; Taylor, M.; Johnson, V.; Emini, E.; Deutsch, P.; Lifson, J.; Bonhoeffer, S.; Nowak, M.; Hahn, B.; Saag, S.; Shaw, G., Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 117, (1995)
[3] Perelson, A.; Neumann, A.; Markowitz, M.; Leonard, J.; Ho, D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582, (1996)
[4] Perelson, A.; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A.; Saksela, K.; Markowitz, M.; Ho, D., Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387, 188, (1997)
[5] Herz, V.; Bonhoeffer, S.; Anderson, R.; May, R.; Nowak, M., Viral dynamics in vivo: limitations on estimations on intracellular delay and virus decay, Proc. nat. acad. sci. USA, 93, 7247, (1996)
[6] Grossman, Z.; Feinberg, M.; Kuznetsov, V.; Dimitrov, D.; Paul, W., HIV infection: how effective is drug combination treatment, Immunol. today, 19, 528, (1998)
[7] Grossman, Z.; Polis, M.; Feinberg, M.; Grossman, Z.; Levi, I.; Jankelevich, S.; Yarchoan, R.; Boon, J.; de Wolf, F.; Lange, J.; Goudsmit, J.; Dimitrov, D.; Paul, W., Ongoing HIV dissemination during HAART, Nat. med., 5, 1099, (1999)
[8] Mittler, J.; Sulzer, B.; Neumann, A.; Perelson, A., Influence of delayed virus production on viral dynamics in HIV-1 infected patients, Math. biosci., 152, 143, (1998) · Zbl 0946.92011
[9] Tam, J., Delay efect in a model for virus replication, IMA J. math. appl. med. biol., 16, 29, (1999) · Zbl 0914.92012
[10] Nelson, P.; Murray, J.; Perelson, A., A model of HIV-1 pathogenesis that includes an intracellular delay, Math. biosci., 163, 201, (2000) · Zbl 0942.92017
[11] Mittler, J.; Markowitz, M.; Ho, D.; Perelson, A., Refined estimates for HIV-1 clearance rate and intracellular delay, Aids, 13, 1415, (1999)
[12] Nelson, P.; Mittler, J.; Perelson, A., Effect of drug efficacy and the eclipse phase of the viral life cycle on estimates of HIV-1 viral dynamic parameters, J. aids, 26, 405, (2001)
[13] Bonhoeffer, S.; May, R.; Shaw, G.; Nowak, M., Virus dynamics and drug therapy, Proc. nat. acad. sci. USA, 94, 6971, (1997)
[14] Wein, L.; D’Amato, R.; Perelson, A., Mathematical considerations of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads, J. theor. biol., 192, 81, (1998)
[15] Ding, A.; Wu, H., Relationship between antiviral treatment effects and biphasic decay rates in modeling HIV dynamics, Math. biosci., 160, 63, (1999) · Zbl 0944.92024
[16] Perelson, A.; Kirschner, D.; De Boer, R., Dynamics of HIV infection of CD4^{+} T cells, Math. biosci., 114, 81, (1993) · Zbl 0796.92016
[17] McLean, A.; Frost, S., Ziduvidine and HIV: mathematical models of within-host population dynamics, Rev. med. virol., 5, 141, (1995)
[18] Kirschner, D., Using mathematics to understand HIV immune dynamics, Notices am. math. soc., 43, 191, (1996) · Zbl 1044.92503
[19] Nowak, M.; Anderson, R.; Boerlijst, M.; Bonhoeffer, S.; May, R.; McMichael, A., HIV-1 evolution and disease progression, Science, 274, 1008, (1996)
[20] Nowak, M.; Bonhoeffer, S.; Shaw, G.; May, R., Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations, J. theor. biol., 184, 205, (1997)
[21] Kepler, T.; Perelson, A., Drug concentration heterogeneity facilitates the evolution of drug resistance, Proc. nat. acad. sci. USA, 95, 11514, (1998) · Zbl 0919.92023
[22] Ross, S.M., Introduction to probability models, (1993), Academic Press · Zbl 0781.60001
[23] MacDonald, N., Biological delay systems, (1989), Cambridge University · Zbl 0669.92001
[24] Perelson, A.; Nelson, P., Mathematical models of HIV dynamics in vivo, SIAM review, 41, 3, (1999) · Zbl 1078.92502
[25] Culshaw, R.; Ruan, S., A delay-differential equation model of HIV infection of CD4^{+} T-cells, Math. biosci., 165, 27, (2000) · Zbl 0981.92009
[26] Murray, J., Mathematical biology, (1989), Springer New York · Zbl 0682.92001
[27] Neumann, A.; Lam, N.; Dahari, H.; Gretch, D.; Wiley, T.; Layden, T.; Perelson, A., Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science, 282, 103, (1998)
[28] Nowak, M.; Bonhoffer, S.; Hill, A.; Boehme, R.; Thomas, H.; McDade, H., Viral dynamics in hepatitis B virus infection, Proc. nat. acad. sci. USA, 93, 4398, (1996)
[29] Tsiang, M.; Rooney, J.; Toole, J.; Gibbs, C., Biphasic clearance kinetics of hepatitis B virus from patients during adefovir dipivoxil therapy, Hepatology, 29, 1863, (1999)
[30] P. Nelson, Mathematical models of HIV pathogenesis and immunology, PhD thesis, University of Washington, 1998
[31] El’sgol’ts, L.; Norkin, S., An introduction to the theory and application of differential equations with deviating arguments, (1973), Academic Press · Zbl 0287.34073
[32] Kim, S.; Byrn, R.; Groopman, J.; Baltimore, D., Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression, J. virol., 63, 3708, (1989)
[33] Guatelli, J.; Gingeras, T.; Richman, D., Alternative splice acceptor utilization during human immunodeficiency virus type 1 infection of cultured cells, J. virol., 64, 4093, (1990)
[34] Pellegrino, M.; Li, G.; Potash, M.; Volsky, D.J., Contribution of multiple rounds of viral entry and reverse transcription to expression of human immunodeficiency virus type 1, J. biol. chem., 266, 1783, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.