zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mathematical analysis of delay differential equation models of HIV-1 infection. (English) Zbl 0992.92035
Summary: Models of HIV-1 infection that include intracellular delays are more accurate representations of the biology and change the estimated values of kinetic parameters when compared to models without delays. We develop and analyze a set of models that include intracellular delays, combination antiretroviral therapy, and the dynamics of both infected and uninfected T cells. We show that when the drug efficacy is less than perfect the estimated value of the loss rate of productively infected T cells, $\delta$, is increased when data is fit with delay models compared to the values estimated with a non-delay model. We provide a mathematical justification for this increased value of $\delta$. We also provide some general results on the stability of non-linear delay differential equation infection models.

MSC:
92C60Medical epidemiology
34K20Stability theory of functional-differential equations
92C50Medical applications of mathematical biology
92D30Epidemiology
WorldCat.org
Full Text: DOI
References:
[1] Ho, D.; Neumann, A.; Perelson, A.; Chen, W.; Leonard, J.; Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123 (1995)
[2] Wei, X.; Ghosh, S.; Taylor, M.; Johnson, V.; Emini, E.; Deutsch, P.; Lifson, J.; Bonhoeffer, S.; Nowak, M.; Hahn, B.; Saag, S.; Shaw, G.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117 (1995)
[3] Perelson, A.; Neumann, A.; Markowitz, M.; Leonard, J.; Ho, D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582 (1996)
[4] Perelson, A.; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A.; Saksela, K.; Markowitz, M.; Ho, D.: Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188 (1997)
[5] Herz, V.; Bonhoeffer, S.; Anderson, R.; May, R.; Nowak, M.: Viral dynamics in vivo: limitations on estimations on intracellular delay and virus decay. Proc. nat. Acad. sci. USA 93, 7247 (1996)
[6] Grossman, Z.; Feinberg, M.; Kuznetsov, V.; Dimitrov, D.; Paul, W.: HIV infection: how effective is drug combination treatment. Immunol. today 19, 528 (1998)
[7] Grossman, Z.; Polis, M.; Feinberg, M.; Grossman, Z.; Levi, I.; Jankelevich, S.; Yarchoan, R.; Boon, J.; De Wolf, F.; Lange, J.; Goudsmit, J.; Dimitrov, D.; Paul, W.: Ongoing HIV dissemination during HAART. Nat. med. 5, 1099 (1999)
[8] Mittler, J.; Sulzer, B.; Neumann, A.; Perelson, A.: Influence of delayed virus production on viral dynamics in HIV-1 infected patients. Math. biosci. 152, 143 (1998) · Zbl 0946.92011
[9] Tam, J.: Delay efect in a model for virus replication. IMA J. Math. appl. Med. biol. 16, 29 (1999) · Zbl 0914.92012
[10] Nelson, P.; Murray, J.; Perelson, A.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. biosci. 163, 201 (2000) · Zbl 0942.92017
[11] Mittler, J.; Markowitz, M.; Ho, D.; Perelson, A.: Refined estimates for HIV-1 clearance rate and intracellular delay. Aids 13, 1415 (1999)
[12] Nelson, P.; Mittler, J.; Perelson, A.: Effect of drug efficacy and the eclipse phase of the viral life cycle on estimates of HIV-1 viral dynamic parameters. J. aids 26, 405 (2001)
[13] Bonhoeffer, S.; May, R.; Shaw, G.; Nowak, M.: Virus dynamics and drug therapy. Proc. nat. Acad. sci. USA 94, 6971 (1997)
[14] Wein, L.; D’amato, R.; Perelson, A.: Mathematical considerations of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads. J. theor. Biol. 192, 81 (1998)
[15] Ding, A.; Wu, H.: Relationship between antiviral treatment effects and biphasic decay rates in modeling HIV dynamics. Math. biosci. 160, 63 (1999) · Zbl 0944.92024
[16] Perelson, A.; Kirschner, D.; De Boer, R.: Dynamics of HIV infection of CD4+ T cells. Math. biosci. 114, 81 (1993) · Zbl 0796.92016
[17] Mclean, A.; Frost, S.: Ziduvidine and HIV: mathematical models of within-host population dynamics. Rev. med. Virol. 5, 141 (1995)
[18] Kirschner, D.: Using mathematics to understand HIV immune dynamics. Notices am. Math. soc. 43, 191 (1996) · Zbl 1044.92503
[19] Nowak, M.; Anderson, R.; Boerlijst, M.; Bonhoeffer, S.; May, R.; Mcmichael, A.: HIV-1 evolution and disease progression. Science 274, 1008 (1996)
[20] Nowak, M.; Bonhoeffer, S.; Shaw, G.; May, R.: Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J. theor. Biol. 184, 205 (1997)
[21] Kepler, T.; Perelson, A.: Drug concentration heterogeneity facilitates the evolution of drug resistance. Proc. nat. Acad. sci. USA 95, 11514 (1998) · Zbl 0919.92023
[22] Ross, S. M.: Introduction to probability models. (1993) · Zbl 0781.60001
[23] Macdonald, N.: Biological delay systems. (1989) · Zbl 0669.92001
[24] Perelson, A.; Nelson, P.: Mathematical models of HIV dynamics in vivo. SIAM review 41, 3 (1999) · Zbl 1078.92502
[25] Culshaw, R.; Ruan, S.: A delay-differential equation model of HIV infection of CD4+ T-cells. Math. biosci. 165, 27 (2000) · Zbl 0981.92009
[26] Murray, J.: Mathematical biology. (1989) · Zbl 0682.92001
[27] Neumann, A.; Lam, N.; Dahari, H.; Gretch, D.; Wiley, T.; Layden, T.; Perelson, A.: Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282, 103 (1998)
[28] Nowak, M.; Bonhoffer, S.; Hill, A.; Boehme, R.; Thomas, H.; Mcdade, H.: Viral dynamics in hepatitis B virus infection. Proc. nat. Acad. sci. USA 93, 4398 (1996)
[29] Tsiang, M.; Rooney, J.; Toole, J.; Gibbs, C.: Biphasic clearance kinetics of hepatitis B virus from patients during adefovir dipivoxil therapy. Hepatology 29, 1863 (1999)
[30] P. Nelson, Mathematical models of HIV pathogenesis and immunology, PhD thesis, University of Washington, 1998
[31] El’sgol’ts, L.; Norkin, S.: An introduction to the theory and application of differential equations with deviating arguments. (1973)
[32] Kim, S.; Byrn, R.; Groopman, J.; Baltimore, D.: Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J. virol. 63, 3708 (1989)
[33] Guatelli, J.; Gingeras, T.; Richman, D.: Alternative splice acceptor utilization during human immunodeficiency virus type 1 infection of cultured cells. J. virol. 64, 4093 (1990)
[34] Pellegrino, M.; Li, G.; Potash, M.; Volsky, D. J.: Contribution of multiple rounds of viral entry and reverse transcription to expression of human immunodeficiency virus type 1. J. biol. Chem. 266, 1783 (1991)