×

Stabilization of second order evolution equations by a class of unbounded feedbacks. (English) Zbl 0992.93039

The system is \[ y''(t) + Ay(t) + Bu(t) = 0, \qquad x(0) = x_0, \quad x'(0) = x_1 \] in Hilbert space, and the aim of this paper is to give conditions that make the closed loop system \((u(t) = BB^*y'(t))\) uniformly stable. The authors give necessary and sufficient conditions for exponential stability and, in the case of nonexponential stability, an explicit decay rate for initial data in certain subspaces.

MSC:

93C25 Control/observation systems in abstract spaces
93D15 Stabilization of systems by feedback
93B07 Observability

References:

[1] K. Ammari and M. Tucsnak , Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force . SIAM. J. Control Optim. 39 ( 2000 ) 1160 - 1181 . Zbl 0983.35021 · Zbl 0983.35021 · doi:10.1137/S0363012998349315
[2] K. Ammari , A. Henrot and M. Tucsnak , Optimal location of the actuator for the pointwise stabilization of a string . C. R. Acad. Sci. Paris Sér. I Math. 330 ( 2000 ) 275 - 280 . MR 1753293 | Zbl 0949.35083 · Zbl 0949.35083 · doi:10.1016/S0764-4442(00)00113-0
[3] A. Bamberger , J. Rauch and M. Taylor , A model for harmonics on stringed instruments . Arch. Rational Mech. Anal. 79 ( 1982 ) 267 - 290 . MR 656795 | Zbl 0534.47027 · Zbl 0534.47027 · doi:10.1007/BF00250794
[4] C. Bardos , L. Halpern , G. Lebeau , J. Rauch and E. Zuazua , Stabilisation de l’équation des ondes au moyen d’un feedback portant sur la condition aux limites de Dirichlet . Asymptot. Anal. 4 ( 1991 ) 285 - 291 . Zbl 0764.35055 · Zbl 0764.35055
[5] C. Bardos , G. Lebeau and J. Rauch , Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary . SIAM J. Control Optim. 30 ( 1992 ) 1024 - 1065 . MR 1178650 | Zbl 0786.93009 · Zbl 0786.93009 · doi:10.1137/0330055
[6] A. Bensoussan , G. Da Prato , M.C. Delfour and S.K. Mitter , Representation and control of infinite Dimensional Systems , Vol. I. Birkhauser ( 1992 ). MR 1246331 | Zbl 0781.93002 · Zbl 0781.93002
[7] J.W.S. Cassals , An introduction to Diophantine Approximation . Cambridge University Press, Cambridge ( 1966 ). Zbl 0077.04801 · Zbl 0077.04801
[8] G. Doetsch , Introduction to the theory and application of the Laplace transformation . Springer, Berlin ( 1974 ). MR 344810 | Zbl 0278.44001 · Zbl 0278.44001
[9] A. Haraux , Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps . Portugal Math. 46 ( 1989 ) 245 - 258 . Article | MR 1021188 | Zbl 0679.93063 · Zbl 0679.93063
[10] A.E. Ingham , Some trigonometrical inequalities with applications in the theory of series . Math. Z. 41 ( 1936 ) 367 - 369 . MR 1545625 | Zbl 0014.21503 · Zbl 0014.21503 · doi:10.1007/BF01180426
[11] S. Jaffard , M. Tucsnak and E. Zuazua , Singular internal stabilization of the wave equation . J. Differential Equations 145 ( 1998 ) 184 - 215 . MR 1620290 | Zbl 0920.35029 · Zbl 0920.35029 · doi:10.1006/jdeq.1997.3385
[12] V. Komornik , Rapid boundary stabilization of linear distributed systems . SIAM J. Control Optim. 35 ( 1997 ) 1591 - 1613 . MR 1466918 | Zbl 0889.35013 · Zbl 0889.35013 · doi:10.1137/S0363012996301609
[13] V. Komornik and E. Zuazua , A direct method for the boundary stabilization of the wave equation . J. Math. Pures Appl. 69 ( 1990 ) 33 - 54 . MR 1054123 | Zbl 0636.93064 · Zbl 0636.93064
[14] J. Lagnese , Boundary stabilization of thin plates . Philadelphia, SIAM Stud. Appl. Math. ( 1989 ). MR 1061153 | Zbl 0696.73034 · Zbl 0696.73034
[15] S. Lang , Introduction to diophantine approximations . Addison Wesley, New York ( 1966 ). MR 209227 | Zbl 0144.04005 · Zbl 0144.04005
[16] J.L. Lions , Contrôlabilité exacte des systèmes distribués . Masson, Paris ( 1998 ). MR 953547
[17] J.L. Lions and E. Magenes , Problèmes aux limites non homogènes et applications , Vol. 1. Dunod, Paris ( 1968 ). MR 247243 | Zbl 0165.10801 · Zbl 0165.10801
[18] F.W.J. Olver , Asymptotic and Special Functions . Academic Press, New York. Zbl 0303.41035 · Zbl 0303.41035
[19] A. Pazy , Semigroups of linear operators and applications to partial differential equations . Springer, New York ( 1983 ). MR 710486 | Zbl 0516.47023 · Zbl 0516.47023
[20] R. Rebarber , Exponential stability of beams with dissipative joints: A frequency approach . SIAM J. Control Optim. 33 ( 1995 ) 1 - 28 . MR 1311658 | Zbl 0819.93042 · Zbl 0819.93042 · doi:10.1137/S0363012992240321
[21] L. Robbiano , Fonction de coût et contrôle des solutions des équations hyperboliques . Asymptot. Anal. 10 ( 1995 ) 95 - 115 . MR 1324385 | Zbl 0882.35015 · Zbl 0882.35015
[22] D.L. Russell , Decay rates for weakly damped systems in Hilbert space obtained with control theoretic methods . J. Differential Equations 19 ( 1975 ) 344 - 370 . MR 425291 | Zbl 0326.93018 · Zbl 0326.93018 · doi:10.1016/0022-0396(75)90009-1
[23] D.L. Russell , Controllability and stabilizability theory for linear partial differential equations: Recent and open questions . SIAM Rev. 20 ( 1978 ) 639 - 739 . MR 508380 | Zbl 0397.93001 · Zbl 0397.93001 · doi:10.1137/1020095
[24] H. Triebel , Interpolation theory, function spaces, differential operators . North Holland, Amsterdam ( 1978 ). MR 503903 | Zbl 0387.46032 · Zbl 0387.46032
[25] M. Tucsnak , Regularity and exact controllability for a beam with piezoelectric actuator . SIAM J. Control Optim. 34 ( 1996 ) 922 - 930 . MR 1384960 | Zbl 0853.73051 · Zbl 0853.73051 · doi:10.1137/S0363012994265468
[26] M. Tucsnak and G. Weiss , How to get a conservative well posed linear system out of thin air . Preprint. · Zbl 1125.93383 · doi:10.1137/S0363012901399295
[27] G.N. Watson , A treatise on the theory of Bessel functions . Cambridge University Press. MR 1349110 | Zbl 0174.36202 | JFM 48.0412.02 · Zbl 0174.36202
[28] G. Weiss , Regular linear systems with feedback . Math. Control Signals Systems 7 ( 1994 ) 23 - 57 . MR 1359020 | Zbl 0819.93034 · Zbl 0819.93034 · doi:10.1007/BF01211484
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.