Myjak, Józef; Szarek, Tomasz Szpilrajn type theorem for concentration dimension. (English) Zbl 0994.37011 Fundam. Math. 172, No. 1, 19-25 (2002). Let \(X\) be a locally compact separable metric space. It is proved that \[ \dim_T(X) =\inf\{\dim_LX': X'\text{ is homeomorphic to }X\}, \] where \(\dim_L(X)\) and \(\dim_T(X)\) stand for the concentration dimension and the topological dimension of \(X\), respectively. Reviewer: Sophia L.Kalpazidou (Thessaloniki) Cited in 1 ReviewCited in 1 Document MSC: 37B99 Topological dynamics 54E45 Compact (locally compact) metric spaces 28A78 Hausdorff and packing measures Keywords:Hausdorff dimension; topological dimension; Lévy concentration function; concentration dimension; locally compact separable metric space PDF BibTeX XML Cite \textit{J. Myjak} and \textit{T. Szarek}, Fundam. Math. 172, No. 1, 19--25 (2002; Zbl 0994.37011) Full Text: DOI OpenURL