×

zbMATH — the first resource for mathematics

On the integrability of linear and nonlinear partial differential equations. (English) Zbl 0994.37036
Summary: A new method for studying boundary value problems for linear and for integrable nonlinear partial differential equations (PDE’s) in two dimensions is reviewed. This method provides a unification as well as a significant extension of the following three seemingly different topics: (a) The classical integral transform method for solving linear PDE’s and several of its variations such as the Wiener-Hopf technique. (b) The integral representation of the solution of linear PDE’s in terms of the Ehrenpreis fundamental principle. (c) The inverse spectral (scattering) method for solving the initial value problem for nonlinear integrable evolution equations.
The detailed implementation of the method is presented for: (a) An arbitrary linear dispersive evolution equation on the half line (b) The nonlinear Schrödinger equation on the half line. (c) The Laplace, Helmholtz and modified Helmholtz equations in an arbitrary convex polygon. In addition, several other applications are briefly considered. The possible extension of this method to multidimensions is also discussed.

MSC:
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
35Q55 NLS equations (nonlinear Schrödinger equations)
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berndtsson B., J. Funct. Anal. 84 pp 358– (1989) · Zbl 0686.46031
[2] Henkin G., Ann. Math. 137 pp 223– (1995) · Zbl 0886.46045
[3] Rigat S., J. Math. Pures Appl. 76 pp 777– (1997) · Zbl 0886.46045
[4] DOI: 10.1002/cpa.3160210503 · Zbl 0162.41103
[5] Zakharov V., Sov. Phys. JETP 34 pp 62– (1972)
[6] DOI: 10.1103/PhysRevLett.19.1095
[7] DOI: 10.1007/BF01425567 · Zbl 0319.34024
[8] Dubrovin B. A., Russ. Math. Surv. 31 pp 59– (1976) · Zbl 0346.35025
[9] DOI: 10.1070/RM1977v032n06ABEH003862 · Zbl 0386.35002
[10] Fokas A. S., Proc. R. Soc. London, Ser. A 53 pp 1411– (1997) · Zbl 0876.35102
[11] Fokas A. S., Lett. Math. Phys. 32 pp 189– (1994) · Zbl 0807.35138
[12] Fokas A. S., SIAM (Soc. Ind. Appl. Math.) J. Math. Anal. 27 pp 738– (1996)
[13] DOI: 10.2307/2946540 · Zbl 0771.35042
[14] DOI: 10.2307/2946540 · Zbl 0771.35042
[15] DOI: 10.1002/cpa.3160420702 · Zbl 0714.34022
[16] DOI: 10.1002/cpa.3160420702 · Zbl 0714.34022
[17] DOI: 10.1002/cpa.3160420702 · Zbl 0714.34022
[18] DOI: 10.1007/BF01077483 · Zbl 0448.35090
[19] DOI: 10.1007/BF01077483 · Zbl 0448.35090
[20] ben-Avraham D., Phys. Lett. A 263 pp 355– (1999) · Zbl 0947.35040
[21] Fokas A. S., Math. Phys. Anal. Geom. 1 pp 313– (1999) · Zbl 0937.37050
[22] Fokas A. S., J. Nonlinear Sci. 9 pp 1– (1999) · Zbl 0959.78008
[23] Kadomtsev B. B., Sov. Phys. Dokl. 15 pp 539– (1970)
[24] DOI: 10.1098/rspa.1974.0076 · Zbl 0282.76008
[25] DOI: 10.1002/sapm1969484377 · Zbl 0216.52904
[26] DOI: 10.1017/S0022112077000408 · Zbl 0351.76016
[27] DOI: 10.1017/S0022377800012046
[28] DOI: 10.1016/0165-2125(90)90006-P · Zbl 0735.35107
[29] Akylas T. R., Annu. Rev. Fluid Mech. 26 pp 191– (1994)
[30] DOI: 10.1016/0167-2789(81)90145-7 · Zbl 1194.35507
[31] DOI: 10.1002/sapm1983693211 · Zbl 0528.35079
[32] DOI: 10.1002/cpa.3160370105 · Zbl 0514.34021
[33] DOI: 10.1002/cpa.3160380103 · Zbl 0578.35040
[34] DOI: 10.1002/sapm1983692135 · Zbl 0527.35080
[35] DOI: 10.1103/PhysRevLett.51.7
[36] DOI: 10.1016/0167-2789(90)90050-Y · Zbl 0707.35144
[37] DOI: 10.1016/0167-2789(86)90184-3 · Zbl 0619.35090
[38] DOI: 10.1007/BF02096873 · Zbl 0702.35241
[39] Wickerhauser M. V., Commun. Math. Phys. 108 pp 67– (1987) · Zbl 0633.35070
[40] Sung L. Y., SIAM J. Math. Anal. 22 pp 1303– (1991) · Zbl 0755.35153
[41] Sung L. Y., Commun. Pure Appl. Math. pp 535– (1991) · Zbl 0737.35118
[42] DOI: 10.1088/0266-5611/5/2/002 · Zbl 0685.35080
[43] DOI: 10.1088/0266-5611/8/5/002 · Zbl 0768.35069
[44] DOI: 10.1063/1.526471 · Zbl 0557.35110
[45] DOI: 10.1016/0167-2789(89)90258-3 · Zbl 0698.35150
[46] Sung L. Y., J. Nonlinear Sci. 5 pp 433– (1995) · Zbl 0847.35124
[47] Boiti M., Theor. Math. Phys. 116 pp 741– (1998) · Zbl 0951.35118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.