Ikeda, Y.; Liu, C.; Tanaka, Y. Quotient compact images of metric spaces, and related matters. (English) Zbl 0994.54015 Topology Appl. 122, No. 1-2, 237-252 (2002). Some characterizations for the quotient compact images of metric spaces are obtained by means of weak bases. In this paper, the following notion of \(\sigma\)-strong networks as a generalization of development in developable spaces is given: Let \(\{{\mathcal C}_n:n \in\mathbb{N}\}\) be a sequence of covers of a space \(X\) such that \({\mathcal C}_{n+1}\) refines \({\mathcal C}_n\) for each \(n\in\mathbb{N}\), then \(\bigcup\{{\mathcal C}_n:n \in\mathbb{N}\}\) is called a \(\sigma\)-strong network for \(X\) if \(\{st(x,{\mathcal C}_n):n \in\mathbb{N}\}\) is a local network at \(x\) in \(X\). New characterizations for quotient compact images of metric spaces by means of \(\sigma\)-strong networks are obtained. The main theorem is that the following are equivalent for a Hausdorff space \(X\): (1) \(X\) is a sequence-covering, quotient compact-image of a metric space; (2) \(X\) has a point-regular weak base; (3) \(X\) is a sequential space with a \(\sigma\)-point-finite strong cs-network. Finally, the authors pose an interesting question: For a sequential space \(X\) with a point-regular \(\text{cs}^*\)-network, characterize \(X\) by means of a nice image of a metric space. Reviewer: Shou Lin (Fujian) Cited in 4 ReviewsCited in 22 Documents MSC: 54C10 Special maps on topological spaces (open, closed, perfect, etc.) 54E40 Special maps on metric spaces 54D55 Sequential spaces Keywords:quotient map; compact map; sequence-covering map; \(\sigma\)-strong network; weak base; sequential space PDF BibTeX XML Cite \textit{Y. Ikeda} et al., Topology Appl. 122, No. 1--2, 237--252 (2002; Zbl 0994.54015) Full Text: DOI References: [1] Alexandroff, S. P., On the metrization of topological spaces, Bull. Polon. Sci. Ser. Math., 8, 135-140 (1960) [2] Arhangel’skii, A. V., Mappings and spaces, Russian Math. Surveys, 21, 115-162 (1966) · Zbl 0171.43603 [3] Brown, M., Semi-metric spaces, (Summer Institute on Set-Theoretic Topology, Madison, Wisconsin (1995), American Mathematical Society: American Mathematical Society Providence, RI), 62-64 [4] Burke, D. K., Cauchy sequences in semi-metric spaces, Proc. Amer. Math. Soc., 33, 161-164 (1972) · Zbl 0233.54015 [5] Chen, H., Weak neighborhoods and Michael-Nagami’s question, Houston J. Math., 25, 2, 297-309 (1999) · Zbl 0965.54031 [6] Corson, H. H.; Michael, E., Metrizability of certain continuous unions, Illinois J. Math., 8, 351-360 (1964) · Zbl 0127.13203 [7] Engelking, R., General Topology (1977), Polish Scientific Publishers: Polish Scientific Publishers Warszawa [8] Filippov, V. V., Quotient \(s\)-maps, Soviet Math. Dokl., 9, 1055-1057 (1968) · Zbl 0188.27804 [9] Franklin, S. P., Spaces in which sequences suffice, Fund. Math., 57, 107-114 (1965) · Zbl 0132.17802 [10] Gruenhage, G., Generalized metric spaces, (Kunen, K.; Vaughan, L. E., Handbook of Set-Theoretic Topology (1984), North-Holland: North-Holland Amsterdam), 423-501 [11] Gruenhage, G.; Michael, E.; Tanaka, Y., Spaces determined by point-countable covers, Pacific J. Math., 113, 303-332 (1984) · Zbl 0561.54016 [12] Heath, R. W., On spaces with point-countable bases, Bull. Pol. Acad. Sci. Ser. Math., 13, 393-395 (1965) · Zbl 0132.18402 [13] Jakovlev, N. N., On \(g\)-metrizable spaces, Soviet Math. Dokl., 17, 156-159 (1976) · Zbl 0402.54030 [14] Junnila, H. J.K.; Yajima, Y., Normality and countable paracompactness with \(σ\)-spaces having special nets, Topology and Appl., 85, 375-394 (1998) · Zbl 0923.54011 [15] Kofner, Ja. A., On a new class of spaces and some problems of symmetrizability theory, Soviet Math. Dokl., 10, 848-854 (1969) [16] Lee, K. B., On certain \(g\)-first countable spaces, Pacific J. Math., 65, 113-118 (1976) · Zbl 0359.54022 [17] Lin, S., On the quotient compact image of metric spaces, Adv. Math., 21, 93-96 (1992) · Zbl 0786.54011 [18] Lin, S., The sequence-covering \(s\)-images of metric spaces, Northeastern Math. J., 9, 81-85 (1993) · Zbl 0841.54028 [19] Lin, S.; Liu, C., On spaces with point-countable cs-networks, Topology Appl., 74, 51-60 (1996) · Zbl 0869.54036 [20] Lin, S.; Liu, C.; Dai, M., Images on locally separable metric spaces, Acta Math. Sinica, 13, 1-8 (1997) · Zbl 0881.54014 [21] Lin, S.; Tanaka, Y., Point-countable \(k\)-networks, closed maps, and related results, Topology Appl., 59, 79-86 (1994) · Zbl 0817.54025 [22] Michael, E.; Nagami, K., Compact-covering images of metric spaces, Proc. Amer. Math. Soc., 37, 260-266 (1973) · Zbl 0228.54008 [23] Nagami, K., Ranges which enable open maps to be compact-covering, Gen. Topology Appl., 3, 355-367 (1973) · Zbl 0278.54011 [24] Sakai, M.; Tamano, K.; Yajima, Y., Regular networks for metrizable spaces and Lašnev spaces, Bull. Polish Acad. Sci., 46, 121-133 (1998) · Zbl 0902.54021 [25] Siwiec, F., Sequence-covering and countably bi-quotient mappings, Gen. Topology Appl., 1, 143-154 (1971) · Zbl 0218.54016 [26] Tanaka, Y., On open finite-to-one maps, Bull. Tokyo Gakugei Univ. Ser. (4), 25, 1-13 (1973) [27] Tanaka, Y., Point-countable covers and \(k\)-networks, Topology Proc., 12, 327-349 (1987) · Zbl 0676.54035 [28] Tanaka, Y., Symmetric spaces, \(g\)-developable spaces and \(g\)-metrizable spaces, Math. Japon., 36, 71-84 (1991) · Zbl 0732.54023 [29] Velichko, N. V., Symmetrizable spaces, Math. Note, 12, 784-786 (1972) · Zbl 0257.54023 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.