zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust control of delay systems: a sliding mode control design via LMI. (English) Zbl 0994.93004
Summary: This paper considers the sliding mode control of uncertain systems with single or multiple, constant or time-varying state-delays, submitted to additive perturbations. The sliding surface is designed so to maximize the calculable set of admissible delays. The conditions for the existence of the sliding regime are studied by using Lyapunov-Krasovskii functionals and Lyapunov-Razumikhin functions. LMIs are used for the optimization procedure. Two examples illustrate the proposed method.

MSC:
93B12Variable structure systems
93C23Systems governed by functional-differential equations
93C73Perturbations in control systems
93D30Scalar and vector Lyapunov functions
15A39Linear inequalities of matrices
WorldCat.org
Full Text: DOI
References:
[1] W. Aggoune, Contribution à la stabilisation de systèmes non linéaires: application aux systèmes non réguliers et aux systèmes à retards, Ph.D., INRIA Lorraine/CRAN, University of Metz, June, 1999 (in French).
[2] C. Bonnet, J.R. Partington, M. Sorine, Robust control and tracking in l\infty of delay systems equipped with a relay sensor, Proceedings of the 8th IFAC Conference on Large Scale Systems (LSS’98), Patras, July 1998.
[3] Bonnet, C.; Partington, J. R.; Sorine, M.: Robust stabilization of a delay system with saturating actuator or sensor. Int. J. Robust nonlinear control 10, No. 7, 579-590 (2000) · Zbl 0973.93045
[4] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishan, V.: Linear matrix inequalities in system and control theory. (1994) · Zbl 0816.93004
[5] Choi, H. H.: A new method for variable structure control system design: a linear matrix inequality approach. Automatica 33, 2089-2092 (1997) · Zbl 0911.93022
[6] H.H. Choi, An LMI approach to sliding mode control design for a class of uncertain time-delay systems, Proceedings of the European Control Conference (ECC’99), Karlsruhe, 1999.
[7] Conte, G.; Perdon, A. M.: The disturbance decoupling problem for systems of a ring. SIAM J. Control optim. 33, No. 3, 750-764 (1995) · Zbl 0831.93011
[8] G. Conte, A.-M. Perdon, Systems over rings: theory and applications, Plenary lecture, Proceedings of the IFAC Workshop on Linear Time Delay Systems (LTDS’98), Grenoble, France, July 1998, pp. 223--234.
[9] M. Dambrine, F. Gouaisbaut, W. Perruquetti, J.-P. Richard, Robustness of sliding mode control under delays effects: a case study, Second IEEE-IMACS Conference Comput. Eng. in Systems Appl. (CESA’98), 1998, pp. 817--821.
[10] M. Dambrine, J.P. Richard, P. Borne, Feedback control of time-delay systems with bounded control and state, Math. Problems Engrg. (1) (1995) 77--87. · Zbl 0918.93040
[11] L. Dugard, E.I. Verriest (Eds.), Stability and Control of Time-delay Systems, Lecture Notes in Control and Information Sciences, Vol. 228, Springer, Berlin, 1997.
[12] L.M. Fridman, E. Fridman, E.I. Shustin, Steady modes and sliding modes in the relay control systems with time delay, Proceedings of the 35th IEEE Conference on Decision and Control (CDC’96), Kobe, Japan, 1996, pp. 4601--4606.
[13] M. Fu, H. Li, S.I. Niculescu, Robust Stability and Stabilisation of Time-Delay System Via Integral Quadratic Constraint Approach, Lecture Notes in Control and Information Sciences, Vol. 228, Springer, Berlin, 1997, pp. 101--116. · Zbl 0916.93068
[14] F. Gouaisbaut, W. Perruquetti, Y. Orlov, J.P. Richard, A sliding mode controller for linear time delay systems, Proceedings of the European Control Conference (ECC’99), Karlsruhe, 1999.
[15] F. Gouaisbaut, W. Perruquetti, J.P. Richard, A sliding mode control for linear systems with input and state delays, Proceedings of the 38th IEEE Conference on Decision and Control (CDC’99), Phoenix, 1999.
[16] D. Ivanescu, Sur la stabilisation des systèmes à retard: théorie et applications, Ph.D thesis, Institut National Polytechnique de Grenoble, 2000.
[17] Kolmanovskii, V. B.; Myshkis, A.: Introduction to the theory and applications of functional differential equations. (1999) · Zbl 0917.34001
[18] Kolmanovskii, V. B.; Niculescu, S. I.; Richard, J. P.: On the Liapunov--Krasovskiĭ functionals for stability analysis of linear delay systems. Int. J. Control 72, No. 4, 374-384 (1999) · Zbl 0952.34057
[19] A.J. Koshkouei, A.S.I. Zinober, Sliding mode time-delay systems, Proceedings of the International Workshop on VSS, Tokyo, 1996, pp. 97--101.
[20] X. Li, C.E. De Souza, Robust stabilization and H\infty control of uncertain linear time-delay systems, Proceedings of the 13th IFAC World Congress, San Francisco, CA, 1996, Vol. H, pp. 113--118.
[21] Li, X.; De Souza, C. E.: Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach. IEEE trans. Automat. control 42, No. 8, 1144-1148 (1997) · Zbl 0889.93050
[22] Lukyanov, A. G.; Utkin, V. I.: Methods of reducing equations of dynamics systems to regular form. Automat. remote control 42, 413-420 (1981) · Zbl 0466.93016
[23] N. Luo, M. de la Sen, State feedback sliding mode controls of a class of time-delay systems, Proceedings of the 1992 American Control Conference (ACC’92), Chicago, IL, USA, 1992, pp. 894--895.
[24] Manitius, A.; Olbrot, A. W.: Finite spectrum assignment problem for systems with delays. IEEE trans. Automat. control 24, No. 4, 541-553 (1979) · Zbl 0425.93029
[25] S.K. Nguang, Robust H\infty control of a class of nonlinear systems with delayed state and control: a LMI approach, 37th IEEE Conference on Decision and Control (CDC’98), Tampa, FL, USA, 1998, pp. 2384--2389.
[26] Niculescu, S. I.: H$\infty $memoryless control with an ${\alpha}$-stability constraint for time delays systems: an LMI approach. IEEE trans. Automat. control 43, No. 5, 739-743 (1998) · Zbl 0911.93031
[27] Niculescu, S. I.; De Souza, C. E.; Dugard, L.; Dion, J. M.: Robust exponential stability of uncertain systems with time-varying delays. IEEE trans. Automat. control 43, No. 5, 743-748 (1998) · Zbl 0912.93053
[28] Olbrot, A. W.: A sufficiently large time delay in feedback loop must destroy exponential stability of any decay rate. IEEE trans. Automat. control 29, 367-368 (1984) · Zbl 0541.93059
[29] Picard, P.; Lafay, J. F.; Kucera, V.: Model matching for linear systems with delays and 2-d systems. Automatica 34, No. 2 (1998) · Zbl 0937.93007
[30] J.-P. Richard, Some trends and tools for the study of time-delay systems, Plenary lecture, Second IEEE-IMACS Conference on Computational Engineering in Systems Applications (CESA’98), Tunisia, 1998, pp. 27--43.
[31] Richard, J. P.; Gouaisbaut, F.; Perruquetti, W.: Sliding mode control in the presence of delay. Kibernética 37, 277-294 (2001) · Zbl 1265.93046
[32] Roh, Y. H.; Oh, J. H.: Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation. Automatica 35, 1681-1685 (1999) · Zbl 0931.93015
[33] Shyu, K. K.; Yan, J. J.: Robust stability of uncertain time-delay systems and its stabilization by variable structure control. Internat. J. Control 57, 237-246 (1993) · Zbl 0774.93066
[34] Tan, K. K.; Wang, Q. -K.; Lee, T. H.: Finite spectrum assignment control of unstable time delay processes with relay tuning. Ind. eng. Chem. res. 37, No. 4, 1351-1357 (1998)
[35] Utkin, V. I.: Sliding modes in control optimization, CCES. (1992) · Zbl 0748.93044