Darafsheh, M. R. Some conjugacy classes in groups associated with the general linear groups. (English) Zbl 0995.20027 Algebras Groups Geom. 15, No. 2, 183-199 (1998). Summary: Let \(q\) be a power of the prime number \(p\) and \(n\) be a natural number. If \(A\in\text{GL}_n(q)\), then \(\theta(A)=(A^t)^{-1}\) is an outer automorphism of \(\text{GL}_n(q)\) if \((n,q)\neq(2,2)\); where \(A^t\) denotes the transpose of the matrix \(A\). In this case we set \(G^+=\text{GL}_n(q)\cdot\langle\theta\rangle\) and our aim in this paper is to find the conjugacy classes of elements of order 2 and 4 in \(G^+-\text{GL}_n(Q)\). MSC: 20G40 Linear algebraic groups over finite fields 20E45 Conjugacy classes for groups 20F28 Automorphism groups of groups Keywords:general linear groups; outer automorphisms; conjugacy classes PDF BibTeX XML Cite \textit{M. R. Darafsheh}, Algebras Groups Geom. 15, No. 2, 183--199 (1998; Zbl 0995.20027)