Teng, Zhidong; Chen, Lansun Global asymptotic stability of periodic Lotka-Volterra systems with delays. (English) Zbl 0995.34071 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 45, No. 8, 1081-1095 (2001). The authors consider the periodic Lotka-Volterra-type system with finite or infinite delays \[ \begin{split} \frac{dx_{i}(t)}{dt}=x_{i}(t)\left[b_{i}(t)-a_{i}(t)x_{i}(t)- \sum_{j=1}^{n}a_{ij}(t)x_{j}(t-\tau_{ij}(t))\right.\\ \left. -\sum_{j=1}^{n} \int_{-\sigma_{ij}}^{0} c_{ij}(t,s) x_{j}(t+s) ds\right],\;\;i=1,2,\ldots,n, \end{split} \tag{1} \] where \(b_{i}(t)\), \(a_{i}(t)\), \(a_{ij}(t)\) are \(\omega\)-periodic and continuous functions on \(\mathbb{R}\); \(c_{ij}(t,s)\) are \(\omega\)-periodic and continuous with respect to \(t\) on \(\mathbb{R}\) and integrable in \(s\) on \([-\sigma_{ij},0]\); there exists a continuous positive function \(h_{0}\) defined on \((-\infty,0]\) and \(0<l=\int_{-\infty}^{0}h_{0}(s) ds<\infty\) such that \(|c_{ij}(t,s)|\leq h_{0}(s)\) for all \((t,s)\in\mathbb{R} \times[-\sigma_{ij},0]\); \(\tau_{ij}(t)\geq 0\) are \(\omega\)-periodic, continuously differentiable functions on \(\mathbb{R}\), \(d\tau_{ij}(t)/dt<1\) and \(\sigma_{ij}\) are nonnegative constants or \(\sigma_{ij}=\infty\); \(i,j=1,\ldots,n\). There are positive constants \(c_{1},\ldots, c_{n}\) such that the functions \[ \gamma_{i}(t)=c_{i}a_{i}(t)-\sum_{j=1}^{n}c_{j} \left(\frac{|a_{ji}(\psi^{-1}_{ji}(t))|} {1-\dot{\tau}_{ji}(\psi^{-1}_{ji}(t))}+ \int_{-\sigma_{ji}}^{0}|c_{ji}(t-s,s)|ds\right), \] where \(\psi^{-1}_{ji}(t)\) is the inverse function of \(\psi_{ji}(t)=1-\tau_{ji}(t)\), are nonnegative and \(\displaystyle\sum_{j=1}^{\infty}\int_{\alpha_{j}}^{\beta_{j}} \gamma_{i}(t) dt=\infty\) for any interval sequence \(\{[\alpha_{i},\beta_{i}]\}\) such that \([\alpha_{i},\beta_{i}]\cap[\alpha_{j},\beta_{j}]=\emptyset\) and \(\beta_{i}-\alpha_{i}=\beta_{j}-\alpha_{j}>0\) for \(i,j=1,2,\ldots\), \(i\neq j\). System (1) is said to be persistent, if for any positive solution \(x_{1}(t),\ldots,x_{n}(t)\) there exist positive constants \(m\), \(M\), \(T\) such that \(m\leq x_{i}(t)\leq M\), \(i=1,\ldots,n\), for \(t\geq T\). Under the above assumptions the main result presented in the paper asserts that if system (1) is persistent, then it has a unique positive \(\omega\)-periodic solution which is globally asymptotically stable. Sufficient conditions for the persistence of system (1) under some additional assumptions are also given. As a sequence, the authors obtain a concrete criterion for the existence and global asymptotic stability of a positive periodic solution to the competitive system (1). Reviewer: Oleg Anashkin (Simferopol) Cited in 21 Documents MSC: 34K20 Stability theory of functional-differential equations 34K13 Periodic solutions to functional-differential equations 34K60 Qualitative investigation and simulation of models involving functional-differential equations 45J05 Integro-ordinary differential equations 92D25 Population dynamics (general) Keywords:Lotka-Volterra system; delay; positive periodic solution; global asymptotic stability; Lyapunov function; persistence PDF BibTeX XML Cite \textit{Z. Teng} and \textit{L. Chen}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 45, No. 8, 1081--1095 (2001; Zbl 0995.34071) Full Text: DOI References: [1] Ahlip, R. A.; King, R. R., Global asymptotic stability of a periodic system of delay Logistic equations, Bull. Austral. Math. Soc., 53, 373-389 (1996) · Zbl 0888.34061 [2] Bereketoglu, H.; Goyri, I., Global asymptotical stability in a nonautonomous Lotka-Volterra type system with infinite delay, J. Math. Anal. Appl., 210, 279-291 (1997) · Zbl 0880.34072 [4] Eilbeck, J. C.; Lopez-Gomez, J., On the periodic Lotka-Volterra competition model, J. Math. Anal. Appl., 210, 58-87 (1997) · Zbl 0874.34039 [5] Freedman, H. I.; Ruan, S., Uniform persistence in functional differential equations, J. Differential Equations, 115, 173-192 (1995) · Zbl 0814.34064 [6] Freedman, H. I.; Wu, J., Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal., 23, 689-701 (1992) · Zbl 0764.92016 [7] Gopalsamy, K., Global asymptotic stability in a periodic integrodifferential system, Tohoku Math. J., 37, 323-332 (1985) · Zbl 0587.45013 [9] Hale, J. K.; Kato, J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21, 11-41 (1978) · Zbl 0383.34055 [10] He, X. Z.; Gopalsamy, K., Persistence, stability and level crossing in an integrodifferential system, J. Math. Biol., 32, 395-426 (1994) · Zbl 0807.92020 [12] Kuang, Y., Global stability in delayed nonautonomous Lotka-Volterra type systems without saturated equilibria, Differential Integral Equations, 9, 557-567 (1996) · Zbl 0843.34077 [14] Sawano, K., Exponential asymptotic stability for functional differential equations with infinite retardations, Tohoku Math. J., 31, 363-382 (1979) · Zbl 0449.34053 [15] Tang, B.; Kuang, Y., Permanence in Kolmogorov-type systems of nonautonomous functional differential equations, J. Math. Anal. Appl., 197, 427-447 (1996) · Zbl 0951.34051 [16] Tang, B.; Kuang, Y., Existence, uniqueness and asymptotic stability of periodic solutions of periodic functional differential systems, Tohoku Math. J., 49, 217-239 (1997) · Zbl 0883.34074 [17] Tineo, A., An iterative scheme for the \(N\)-competing species problem, J. Differential Equations, 116, 1-15 (1995) · Zbl 0823.34048 [19] Wang, W.; Chen, L.; Lu, Z., Global stability of a competition model with periodic coefficients and time delays, Canad. Appl. Math. Quart., 3, 365-378 (1995) · Zbl 0845.92020 [20] Wang, K.; Huang, Q., Norm |·|\(_h\) and the periodic solutions of Volterra integro-differential equations (in Chinese), J. Northeast Normal Univ., 3, 7-16 (1985) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.