zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New exact solutions for three nonlinear evolution equations. (English) Zbl 0995.35003
Summary: By using general solutions of coupled Riccati equations and the relations between them a direct algebra method is described to construct several kinds of closed-form travelling wave solutions for some nonlinear differential equations. By this method three important nonlinear partial differential equations are studied and, in addition to re-deriving all known solutions, several new solutions are explicitly obtained with the aid of symbolic computation.

35A08Fundamental solutions of PDE
Full Text: DOI
[1] Hereman, W.; Takaoka, M.: J. phys. A. 23, 4805 (1990) · Zbl 0719.35085
[2] Malfliet, W.: Am. J. Phys.. 60, 650 (1992)
[3] Parkes, E. J.: J. phys. A. 27, 497 (1994)
[4] Li, Z. B.: Mathematics mechanization and applications. 389 (2000) · Zbl 0968.68201
[5] Fan, E. G.: Phys. lett. A. 277, 212 (2000)
[6] Feng, X.: Int. J. Theor. phys.. 39, 207 (2000)
[7] Feng, X.: Phys. lett. A. 213, 167 (1996)
[8] Hu, J.: Phys. lett. A. 287, 81 (2001)
[9] Fan, E. G.: Phys. lett. A. 282, 18 (2001)
[10] Wang, M. L.; Zhou, Y. B.; Li, Z. B.: Phys. lett. A. 199, 169 (1995)
[11] Yao, R. X.; Li, Z. B.: Lecture notes series on computing. 9, 201 (2001)
[12] Wu, W. T.: Mechanical theorem proving in geometries: basic principles. (1994) · Zbl 0831.03003
[13] Sachs, R. L.: Physica D. 30, 1 (1988)
[14] Hirota, R.; Grammaticos, B.; Ramani, A.: J. math. Phys.. 27, 1499 (1986)
[15] Wu, Y. T.: Phys. lett. A. 255, 259 (1999)