×

zbMATH — the first resource for mathematics

Kolmogorov-Sinai entropy for locally coupled piecewise linear maps. (English) Zbl 0995.37004
Summary: We present analytical results for the Kolmogorov-Sinai entropy of a one-dimensional lattice of locally coupled piecewise linear maps, for some particular values of the coupling strength. Our results explain the numerically observed fact that the entropy of a lattice of chaotic maps increases for strong coupling.

MSC:
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kaneko, K., The coupled map lattice, (), 1
[2] Kaneko, K., Physica D, 34, 1, (1989)
[3] Lind, P.; Corte-Real, J.; Gallas, J.A.C., Physica A, 295, 297, (2001)
[4] Chaté, H.; Manneville, P., Physica D, 32, 409, (1988)
[5] de Souza Pinto, S.E.; Viana, R.L., Phys. rev. E, 61, 5154, (2000)
[6] J.P. Crutchfield, K. Kaneko, Phenomenology of spatio-temporal chaos, in: Hao Bain-Lin (Ed.), Directions in Chaos, Vol. 1, World Scientific, Singapore, 1987, p. 272.
[7] Kaneko, K., Physica D, 23, 436, (1986)
[8] Isola, S.; Politi, A.; Ruffo, S.; Torcini, A., Phys. lett. A, 143, 365, (1990)
[9] Ruelle, D., Chaotic evolution and strange attractors, (1989), Cambridge University Press Cambridge
[10] Kaneko, K., Physica D, 41, 137, (1990)
[11] Batista, A.M.; Viana, R.L., Phys. lett. A, 286, 134, (2001) · Zbl 0969.37519
[12] Shibata, H., Physica A, 292, 182-192, (2001)
[13] Tsallis, C.; Plastino, A.R.; Zheng, W.-M.; Lyra, M.L.; Tsallis, C.; Costa, U.M.S.; Lyra, M.L.; Plastino, A.R.; Tsallis, C., Chaos, solitons & fractals, Phys. rev. lett., Phys. rev. E, 56, 245, (1997)
[14] Montangero, S.; Fronzoni, L.; Grigolini, P., Phys. lett. A, 285, 81-87, (2001)
[15] A.M. Batista, S.E.S. Pinto, S.R. Lopes, R.L. Viana, Lyapunov spectrum and synchronization of piecewise linear map lattices with power-law coupling, Phys. Rev. E (2002), to be published.
[16] Schuster, H.G., Deterministic chaos, (1988), VCH Weinheim
[17] Davis, P.J., Circulant matrices, (1979), Wiley-Interscience New York · Zbl 0418.15017
[18] Carretero-González, R.; Ørstavik, S.; Huke, J.; Broomhead, D.S.; Stark, J., Chaos, 9, 466, (1999)
[19] Pesin, Y.B., Russ. math. surv., 32, 55, (1977)
[20] Ruelle, D., Bol. soc. brasil mat., 9, 83, (1978)
[21] Bricmont, J.; Kupiainen, A., Physica D, 103, 18-33, (1997)
[22] Keller, G.; Künzle, M.; Volevich, D.L.; Volevich, D.L., Ergodic theory dyn. systems, Russ. acad. dokl. math., Russ. acad. math. sbornik, 79, 347-363, (1994)
[23] Alligood, K.A.; Sauer, T.; Yorke, J.A., Chaos. an introduction to dynamical systems, (1997), Springer New York
[24] Boldrighini, C.; Bunimovich, L.A.; Cosimi, G.; Frigio, S.; Pellegrinotti, A., J. statist. phys., 102, 1271, (2001)
[25] Gradshteyn, S.; Ryzhik, I.M., Table of integrals, series and products, (1994), Academic Press New York · Zbl 0918.65002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.