zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The mortar method in the wavelet context. (English) Zbl 0995.65131
This paper analyzes mathematically the use of wavelets in the framework of the mortar method. It starts with the reviews of the theory of the mortar method for non-conforming domain decomposition; in particular, it points out some basic assumptions under which stability and convergence of such method can be proved. Next, it analyzes the construction of mortar approximation spaces in the biorthogonal wavelet framework. An a priori error estimate is given and it is optimal in the geometrically conforming case. The paper is essentially theoretical and does not include any numerical experiments. It is nicely written.

MSC:
65N55Multigrid methods; domain decomposition (BVP of PDE)
35J25Second order elliptic equations, boundary value problems
65N15Error bounds (BVP of PDE)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65T60Wavelets (numerical methods)
WorldCat.org
Full Text: DOI Numdam EuDML
References:
[1] Y. Achdou , G. Abdoulaev , Y. Kutznetsov and C. Prud’homme , On the parallel inplementation of the mortar element method . ESAIM: M2AN 33 ( 1999 ) 245 - 259 . Numdam | Zbl 0946.65111 · Zbl 0946.65111 · doi:10.1051/m2an:1999113 · http://publish.edpsciences.org/abstract/m2an/v33/p245 · eudml:197467
[2] L. Anderson , N. Hall , B. Jawerth and G. Peters , Wavelets on closed subsets on the real line , in Topics in the theory and applications of wavelets, L.L. Schumaker and G. Webb, Eds., Academic Press, Boston ( 1993 ) 1 - 61 . Zbl 0808.42019 · Zbl 0808.42019
[3] F. Ben Belgacem , The mortar finite element method with Lagrange multiplier . Numer. Math. 84 ( 1999 ) 173 - 197 . Zbl 0944.65114 · Zbl 0944.65114 · doi:10.1007/s002110050468
[4] F. Ben Belgacem , A. Buffa and Y. Maday , The mortar element method for 3D Maxwell’s equations . C. R. Acad. Sci. Paris Sér. I Math. 329 ( 1999 ) 903 - 908 . Zbl 0941.65118 · Zbl 0941.65118 · doi:10.1016/S0764-4442(00)87497-2
[5] F. Ben Belgacem and Y. Maday , Non conforming spectral method for second order elliptic problems in 3D . East-West J. Numer. Math. 4 ( 1994 ) 235 - 251 . Zbl 0835.65129 · Zbl 0835.65129
[6] C. Bernardi , Y. Maday , C. Mavripilis and A.T. Patera , The mortar element method applied to spectral discretizations , in Finite element analysis in fluids. Proc. of the seventh international conference on finite element methods in flow problems, T. Chung and G. Karr, Eds., UAH Press ( 1989 ). Zbl 0704.65077 · Zbl 0704.65077
[7] C. Bernardi , Y. Maday and A.T. Patera , Domain decomposition by the mortar element method , in Asymptotic and numerical methods for partial differential equations with critical parameters, H.G. Kaper and M. Garbey, Eds., N.A.T.O. ASI Ser. C 384 . Zbl 0799.65124 · Zbl 0799.65124
[8] C. Bernardi , Y. Maday and A.T. Patera , A new nonconforming approach to domain decomposition: the mortar element method , in Nonlinear partial differential equations and their applications, Collège de France Seminar XI, H. Brezis and J.L.Lions, Eds. ( 1994 ) 13 - 51 . Zbl 0797.65094 · Zbl 0797.65094
[9] S. Bertoluzza , An adaptive wavelet collocation method based on interpolating wavelets , in Multiscale wavelet methods for partial differential equations. W. Dahmen, A.J. Kurdila and P. Oswald, Eds., Academic Press 6 ( 1997 ) 109 - 135 .
[10] S. Bertoluzza and V. Perrier , The mortar method in the wavelet context . Technical Report 99 - 17 , LAGA, Université Paris 13 ( 1999 ). · Zbl 0995.65131
[11] S. Bertoluzza and P. Pietra , Space frequency adaptive approximation for quantum hydrodynamic models . Transport Theory Statist. Phys. 28 ( 2000 ) 375 - 395 . Zbl 0971.76105 · Zbl 0971.76105 · doi:10.1080/00411450008205880
[12] D. Braess and W. Dahmen , Stability estimate of the mortar finite element method for 3-dimensional problems . East-West J. Numer. Math. 6 ( 1998 ) 249 - 264 . Zbl 0922.65072 · Zbl 0922.65072
[13] F. Brezzi and M. Fortin , Mixed and hybrid finite element methods . Springer-Verlag, New York ( 1991 ). MR 1115205 | Zbl 0788.73002 · Zbl 0788.73002
[14] C. Canuto and A. Tabacco , Multilevel decomposition of functional spaces . J. Fourier Anal. Appl. 3 ( 1997 ) 715 - 742 . Zbl 0896.42023 · Zbl 0896.42023 · doi:10.1007/BF02648264 · eudml:59533
[15] C. Canuto , A. Tabacco and K. Urban , The wavelet element method . Part I: Construction and analysis. Appl. Comput. Harmon. Anal. ACHA 6 ( 1999 ) 1 - 52 . Zbl 0949.42024 · Zbl 0949.42024 · doi:10.1006/acha.1997.0242
[16] L. Cazabeau , C. Lacour and Y. Maday , Numerical quadratures and mortar methods , in Computational Sciences for the 21st Century, Bristeau $et~al.$, Eds., John Wiley & Sons, New York ( 1997 ) 119 - 128 . Zbl 0911.65117 · Zbl 0911.65117
[17] P. Charton and V. Perrier , A pseudo-wavelet scheme for the two-dimensional Navier-Stokes equation . Comput. Appl. Math. 15 ( 1996 ) 139 - 160 . Zbl 0868.76064 · Zbl 0868.76064
[18] G. Chiavassa and J. Liandrat , On the effective construction of compactly supported wavelets satisfying homogeneous boundary conditions on the interval . Appl. Comput. Harmon. Anal. ACHA 4 ( 1997 ) 62 - 73 . Zbl 0868.42014 · Zbl 0868.42014 · doi:10.1006/acha.1996.0203
[19] A. Cohen , I. Daubechies and P. Vial , Wavelets on the interval and fast wavelet transforms . Appl. Comput. Harmon. Anal. ACHA 1 ( 1993 ) 54 - 81 . Zbl 0795.42018 · Zbl 0795.42018 · doi:10.1006/acha.1993.1005
[20] A. Cohen and R. Masson , Wavelet methods for second order elliptic problems, preconditioning and adaptivity . SIAM J. Sci. Comput. 21 ( 1999 ) 1006 - 1026 . Zbl 0981.65132 · Zbl 0981.65132 · doi:10.1137/S1064827597330613
[21] A. Cohen and R. Masson , Wavelet adaptive method for second order elliptic problems . boundary conditions and domain decomposition. Numer. Math. 86 ( 1999 ) 193 - 238 . Zbl 0961.65106 · Zbl 0961.65106 · doi:10.1007/s002110000158
[22] S. Dahlke , W. Dahmen ans R. Hochmut and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23 (1997) 21-48. Zbl 0872.65098 · Zbl 0872.65098 · doi:10.1016/S0168-9274(96)00060-8
[23] W. Dahmen , Stability of multiscale transformations . J. Fourier Anal. Appl. 2 ( 1996 ) 341 - 361 . Zbl 0919.46006 · Zbl 0919.46006 · eudml:59483
[24] W. Dahmen and A. Kunoth , Multilevel preconditioning . Numer. Math. 63 ( 1992 ) 315 - 344 . Article | Zbl 0757.65031 · Zbl 0757.65031 · doi:10.1007/BF01385864 · eudml:133684
[25] W. Dahmen , A. Kunoth and K. Urban , Biorthogonal spline-wavelets on the interval - stability and moment condition . Appl. Comput. Harmon. Anal. ACHA 6 ( 1999 ) 132 - 196 . Zbl 0922.42021 · Zbl 0922.42021 · doi:10.1006/acha.1998.0247
[26] W. Dahmen and R. Schneider , Composite wavelet bases for operator equations . Math. Comp. 68 ( 1999 ) 1533 - 1567 . Zbl 0932.65148 · Zbl 0932.65148 · doi:10.1090/S0025-5718-99-01092-3
[27] I. Daubechies , Ten lectures on wavelets , in CBMS-NSF Regional Conference Series in Applied Mathematics 61. SIAM, Philadelphia ( 1992 ). MR 1162107 | Zbl 0776.42018 · Zbl 0776.42018
[28] S. Jaffard , Wavelet methods for fast resolution of elliptic problems . SIAM J. Numer. Anal. 29 ( 1992 ) 965 - 986 . Zbl 0761.65083 · Zbl 0761.65083 · doi:10.1137/0729059
[29] Y. Maday , V. Perrier and J.C. Ravel , Adaptivité dynamique sur bases d’ondelettes pour l’approximation d’équations aux dérivées partielles . C. R. Acad. Sci. Paris Sér. I Math. 312 ( 1991 ) 405 - 410 . Zbl 0709.65099 · Zbl 0709.65099
[30] R. Masson , Biorthogonal spline wavelets on the interval for the resolution of boundary problems . M$^{\,3}$AS (Math. Models Methods Appl. Sci.) 6 ( 1996 ) 749 - 791 . Zbl 0924.65100 · Zbl 0924.65100 · doi:10.1142/S0218202596000328
[31] Y. Meyer , Ondelettes et opérateurs . Hermann, Paris ( 1990 ). MR 1085487 | Zbl 0694.41037 · Zbl 0694.41037
[32] P. Monasse and V. Perrier , Orthonormal wavelet bases adapted for partial differential equations with boundary conditions . SIAM J. Math. Anal. 29 ( 1998 ) 1040 - 1065 . Zbl 0921.35036 · Zbl 0921.35036 · doi:10.1137/S0036141095295127
[33] C. Prud’homme , A strategy for the resolution of the tridimensional incompressible Navier-Stokes equations , in Méthodes itératives de décomposition de domaines et communications en calcul parallèle. Calcul. Parallèles Réseaux Syst. Répartis 10 Hermès ( 1998 ) 371 - 380 .
[34] S. Grivet Talocia and A. Tabacco , Wavelets on the interval with optimal localization . M$^{\,3}$AS (Math. Models Methods Appl. Sci.) 10 ( 2000 ) 441 - 462 . Zbl 1012.42026 · Zbl 1012.42026 · doi:10.1142/S0218202500000252
[35] H. Triebel , Interpolation theory, function spaces, differential operators . North Holland-Elsevier Science Publishers, Amsterdam ( 1978 ). MR 503903 | Zbl 0387.46032 · Zbl 0387.46032
[36] B. Wohlmut , A mortar finite element method using dual spaces for the Lagrange multiplier . SIAM J. Numer. Anal. 38 ( 2000 ) 989 - 1012 . Zbl 0974.65105 · Zbl 0974.65105 · doi:10.1137/S0036142999350929