zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A unified prediction of computer virus spread in connected networks. (English) Zbl 0995.68007
Summary: We derive two models of viral epidemiology on connected networks and compare results to simulations. The differential equation model easily predicts the expected long term behavior by defining a boundary between survival and extinction regions. The discrete Markov model captures the short term behavior dependent on initial conditions, providing extinction probabilities and the fluctuations around the expected behavior. These analysis techniques provide new insight on the persistence of computer viruses and what strategies should be devised for their control.

68M15Reliability, testing and fault tolerance computer systems
Full Text: DOI
[1] Callaway, D.; Newman, M.; Strogatz, S.; Watts, D.: Phys. rev. Lett.. 85, 5468 (2000)
[2] Newman, M.; Watts, D.: Phys. rev. E. 60, 7332 (1999)
[3] Barabasi, A.; Albert, R.; Jeong, H.: Physica A. 272, 173 (1999)
[4] Pandit, S.; Amritkar, R.: Phys. rev. E. 60, R1119 (1999)
[5] Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S.: Phys. rev. Lett.. 85, 4626 (2000)
[6] Moore, C.; Newman, M.: Phys. rev. E. 61, 5678 (2000)
[7] Watts, D.; Strogatz, S.: Nature. 393, 440 (1998)
[8] Soh, B.; Dillon, T.; County, P.: Comput. networks ISDN syst.. 27, 1447 (1995)
[9] Schwartz, I.: J. math. Biol.. 30, 473 (1992)
[10] Kephart, J.; White, S.: Proceedings of the 1991 IEEE computer society symposium on research in security and privacy. 343-359 (1991)
[11] Hoppensteadt, F.: Mathematical methods of population biology. (1982) · Zbl 0481.92016
[12] Bailey, N.: The mathematical theory of infectious diseases and its applications. (1975) · Zbl 0334.92024
[13] Pastor-Satorras, R.; Vespignani, A.: Phys. rev. Lett.. 86, 3200 (2001)
[14] Barabasi, A. -L.; Albert, R.; Jeong, H.: Physica A. 281, 69 (2000)
[15] W. Spears, L. Billings, I. Schwartz, Modeling viral epidemiology, Naval Research Laboratory, NRL/MR/6700-01-8537, 2001