zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Response characteristics of a fractional oscillator. (English) Zbl 0995.70017
Summary: The integral equation of motion of a driven fractional oscillator is obtained by generalizing the corresponding equation of motion of a driven harmonic oscillator to include integrals of arbitrary order according to the methods of fractional calculus. The Green’s function solution for the fractional oscillator is obtained in terms of Mittag-Leffler functions using Laplace transforms. The response and resonance characteristics of the fractional oscillator are studied for several cases of forcing function.

70J35Forced linear oscillatory motions
Full Text: DOI
[1] Achar, B. N. Narahari; Hanneken, J. W.; Enck, T.; Clarke, T.: Physica A. 297, 361-367 (2001)
[2] R. Gorenflo, F. Mainardi, Fractional oscillations and Mittag--Leffler functions, International Workshop on the Recent Advances in Applied Mathematics (RAAM96), State of Kuwait, May 4--7, 1996, Proceedings, Kuwait University, 1996, pp. 193--208. · Zbl 0916.34011
[3] Gorenflo, R.; Rutman, R.: On ultraslow and on intermediate processes. Transform methods and special functions, sophia, 1994 (1995) · Zbl 0923.34005
[4] Mainardi, F.: Chaos, solitons and fractals. 7, No. 9, 1461-1477 (1996) · Zbl 1080.26505
[5] Achar, B. N. Narahari; Hanneken, John W.; Clarke, T.: Physica A. 309, 275-288 (2002)
[6] Oldham, K. B.; Spanier, J.: The fractional calculus. (1974) · Zbl 0292.26011
[7] Miller, K.; Ross, B.: An introduction to the fractional calculus and fractional differential equations. (1993) · Zbl 0789.26002
[8] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[9] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications. (1993) · Zbl 0818.26003
[10] Tofighi, Ali: Physica A. 329, 29-34 (2003)
[11] Ryabov, Ya.E.; Puzenko, A.: Phys. rev. B. 66, 184201-184208 (2002)
[12] A. Erdélyi, Higher Transcendental Functions, Vol. III, McGraw-Hill, New York, 1955. · Zbl 0064.06302
[13] Gorenflo, R.; Loutchko, J.; Luchko, Y.: Fractional calculus appl. Anal.. 5, 491-518 (2002)
[14] Marion, J. B.; Thornton, S. T.: Classical dynamics of particles and systems. (1995)