×

Response characteristics of a fractional oscillator. (English) Zbl 0995.70017

Summary: The integral equation of motion of a driven fractional oscillator is obtained by generalizing the corresponding equation of motion of a driven harmonic oscillator to include integrals of arbitrary order according to the methods of fractional calculus. The Green’s function solution for the fractional oscillator is obtained in terms of Mittag-Leffler functions using Laplace transforms. The response and resonance characteristics of the fractional oscillator are studied for several cases of forcing function.

MSC:

70J35 Forced motions in linear vibration theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Narahari Achar, B. N.; Hanneken, J. W.; Enck, T.; Clarke, T., Physica A, 297, 361-367 (2001) · Zbl 0969.70511
[2] Oldham, K. B.; Spanier, J., The Fractional Calculus (1974), Academic Press: Academic Press New York · Zbl 0428.26004
[3] Miller, K.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), Wiley: Wiley New York · Zbl 0789.26002
[4] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[5] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach Amsterdam · Zbl 0818.26003
[6] R. Gorenflo, F. Mainardi, Fractional Oscillations and Mittag-Leffler Functions, International Workshop on the Recent Advances in Applied Mathematics (RAAM96), State of Kuwait May 4-7, 1996, Proceedings, Kuwait University (1996) 193-208.; R. Gorenflo, F. Mainardi, Fractional Oscillations and Mittag-Leffler Functions, International Workshop on the Recent Advances in Applied Mathematics (RAAM96), State of Kuwait May 4-7, 1996, Proceedings, Kuwait University (1996) 193-208. · Zbl 0916.34011
[7] Gorenflo, R.; Rutman, R., On ultraslow and on intermediate processes, (Rusev, P.; Dimovski, I.; Kiryakova, V., Transform Methods and Special Functions, Sophia 1994 (1995), Science Culture and Technology: Science Culture and Technology Singapore) · Zbl 0923.34005
[8] Mainardi, F., Chaos, Solitons & Fractals, 7, 9, 1461-1477 (1996) · Zbl 1080.26505
[9] L. Blank, Numerical treatment of differential equations of fractional order, MCCM Numerical Analysis Report No. 287, The University of Manchester, 1996.; L. Blank, Numerical treatment of differential equations of fractional order, MCCM Numerical Analysis Report No. 287, The University of Manchester, 1996.
[10] Bagley, R. L.; Torvik, P. J., A generalized derivative model for an elastomer damper, Shock and Vib. Bull., 49, 2, 135-143 (1979)
[11] Bagley, R. L.; Torvik, P. J., The role of damping in vibration and noise control, ASME DE, 5, 125-135 (1987)
[12] Gaul, L.; Klein, P.; Kemple, S., Damping description involving fractional operators, Mech. Sys. Sig. Proc., 5, 2, 81-88 (1991)
[13] Beyer, H.; Kempfle, S., Definition of physically consistent damping laws with fractional derivatives, ZAMM, 75, 8, 623-635 (1995) · Zbl 0865.70014
[14] Kempfle, S., Causality criteria for solutions of linear fractional differential equations, Frac. Cal. App. Ana., 1, 4, 351-363 (1998) · Zbl 1042.34017
[15] Marion, J. B.; Thornton, S. T., Classical Dynamics of Particles and Systems (1995), Saunders: Saunders Fort Worth
[16] Arfken, G. B.; Weber, H. J., Mathematical Methods for Physicists (1995), Academic Press: Academic Press San Diego
[17] A. Erdélyi, Higher Transcendental Functions, Vol III, McGraw-Hill, New York, 1955.; A. Erdélyi, Higher Transcendental Functions, Vol III, McGraw-Hill, New York, 1955. · Zbl 0064.06302
[18] McLachlan, N. W., Complex Variable Theory and Transform Calculus (1963), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0052.10802
[19] Sneddon, I. N., The Use of Integral Transforms (1972), McGraw-Hill: McGraw-Hill New York · Zbl 0265.73085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.