zbMATH — the first resource for mathematics

On the asymptotic analysis of a non-symmetric bar. (English) Zbl 0995.74033
Summary: We study the three-dimensional elasticity problem for a non-symmetric heterogeneous rod. The asymptotic expansion of the solution is constructed, and the coercitivity of the homogenized equation is proved. Estimates are derived for the difference between the truncated series and exact solution.
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
35Q72 Other PDE from mechanics (MSC2000)
Full Text: DOI Link EuDML
[1] N.S. Bakhvalov and G.P. Panasenko, Homogenization: Averaging Processes in Periodic Media. Nauka, Moscow (1984) (Russian). Kluwer, Dordrecht, Boston and London (1989) (English). · Zbl 0692.73012
[2] G. Fichera, Existence theorems in elasticity. Handbuch der Physic, Band 6a/2, Springer-Verlag, Berlin-Heidelberg-New York (1972). · Zbl 0269.73028
[3] G.A. Iosifían, O.A. Oleinik and A.S. Shamaev, Mathematical Problems in elasticity and homogenization. Studies Math. Appl.26, Elsevier, Amsterdam (1992). Zbl0768.73003 · Zbl 0768.73003
[4] S.M. Kozlov, O.A. Oleinik and V.V. Zhikov, Homogenization of Partial Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1992).
[5] F. Murat and A. Sili, Comportement asymptotique des solutions du système de l’élasticité linéarisée anisotrope hétérogène dans des cylindres minces. C. R. Acad. Sci. Ser. I328 (1999) 179-184. · Zbl 0929.74010
[6] S.A. Nazarov, Justification of asymptotic theory of thin rods. Integral and pointwise estimates, in Problems of Mathematical Physics and Theory of Functions, St-Petersbourg University Publishers (1997) 101-152. · Zbl 0917.35029
[7] G.P. Panasenko, Asymptotics of higher orders of solutions of equations with rapidly oscillating coefficients. U.S.S.R Doklady6 (1978) 1293-1296. Zbl0456.35006 · Zbl 0456.35006
[8] G.P. Panasenko, Asymptotic analysis of bar systems. I. Russian J. Math. Phys.2 (1994) 325-352. · Zbl 0924.73020
[9] G.P. Panasenko, Asymptotic analysis of bar systems. II. Russian J. Math. Phys.4 (1996) 87-116. · Zbl 0924.73021
[10] G.P. Panasenko and J. Saint Jean Paulin, An asymptotic analysis of junctions of non-homogeneous elastic rods: boundary layers and asymptotics expansions, touch junctions.Moscow, Metz, Comp. Math. Phys.33 (1993) 1483-1508. · Zbl 0816.73025
[11] J. Sanchez-Hubert and E. Sanchez-Palencia, Introduction aux méthodes asymptotiques et à l’homogénisation. Masson, Paris, Milan, Barcelone, Bonne (1992).
[12] J. Sanchez-Hubert and E. Sanchez-Palencia, Statics of curved rods on account of torsion and flexion. Eur. J. Mech. A/Solids18 (1999) 365-390. · Zbl 0938.74040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.