zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical experiments in revisited brittle fracture. (English) Zbl 0995.74057
Summary: The numerical implementation of a model of brittle fracture developed by {\it G. Francfort} and {\it J.-J. Marigo} [ibid. 46, No. 8, 1319-1342 (1998; Zbl 0966.74060)] is presented. We examine various computational methods based on variational approximations of the original functional. They are tested on antiplanar and planar examples that are beyond the reach of the classical computational tools of fracture mechanics.

MSC:
74R10Brittle fracture
74S05Finite element methods in solid mechanics
74G65Energy minimization (equilibrium problems in solid mechanics)
WorldCat.org
Full Text: DOI
References:
[1] Ambrosio, L.: Variational problems in SBV and image segmentation. Acta appl. Math. 17, 1-40 (1989) · Zbl 0697.49004
[2] Ambrosio, L.: A compactness theorem for a special class of functions of bounded variation. Boll. un. Mat. ital. 3, No. B, 857-881 (1989) · Zbl 0767.49001
[3] Ambrosio, L.: Existence theory for a new class of variational problems. Arch. rational mech. Anal. 111, No. 1, 291-322 (1990) · Zbl 0711.49064
[4] Ambrosio, L.; Tortorelli, V. M.: Approximation of functional depending on jumps by elliptic functionals via ${\Gamma}$-convergence. Comm. pure appl. Math. 43, 999-1036 (1990) · Zbl 0722.49020
[5] Ambrosio, L.; Tortorelli, V. M.: On the approximation of free discontinuity problems. Boll. un. Mat. ital. 7, No. 6B, 105-123 (1992) · Zbl 0776.49029
[6] Amestoy, M., 1987. Propagations de fissures en élasticité plane. Thèse d’Etat, Paris
[7] Amestoy, M.; Leblond, J-B.: Crack path in plane situation--II, detailed form of the expansion of the stress intensity factors. Int. J. Solids structures 29, No. 4, 465-501 (1989) · Zbl 0755.73072
[8] Bellettini, G.; Coscia, A.: Discrete approximation of a free discontinuity problem. Numer. funct. Anal. optim. 15, 105-123 (1994) · Zbl 0806.49002
[9] Borouchaki, H., Laug, P., 1996. Maillage de courbes gouverné par une carte de métriques. Technical Report RR-2818, INRIA
[10] Bourdin, B., 1999. Image segmentation with a finite element method. RAIRO Modél. Math. Anal. Numér. 33 (2), 229--244 · Zbl 0947.65075
[11] Bourdin, B., 1998. Une formulation variationnelle en mécanique de la rupture, théorie et mise en oeuvre numérique. Thèse de Doctorat, Université Paris Nord
[12] Bourdin, B., Chambolle, A., 1999. Implementation of an adaptive finite element approximation of the Mumford--Shah functional (in preparation) · Zbl 0961.65062
[13] Carriero, M.; Leaci, A.: Existence theorem for a Dirichlet problem with free discontinuity set. Nonlinear anal., th. Meth. appls. 15, No. 7, 661-677 (1990) · Zbl 0713.49003
[14] Chambolle, A., 1998. Finite differences discretizations of the Mumford--Shah functional. RAIRO Modél. Math. Anal. Numér. 33 (2), 261--288 · Zbl 0947.65076
[15] Chambolle, A., Dal Maso, G., 1998. Discrete approximation of the Mumford--Shah functional in dimension two. RAIRO Modél. Math. Anal. Numér. (in preparation)
[16] De-Giorgi, E.; Carriero, M.; Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. rational mech. Anal. 108, 195-218 (1989) · Zbl 0682.49002
[17] Ekeland, I.; Temam, R.: Convex analysis and variational problems. (1976) · Zbl 0322.90046
[18] Finzi-Vita, S.; Perugia, P.: Some numerical experiments on the variational approach to image segmentation. Proceedings of the second European workshop on image processing and mean curvature motion, Palma de Mallorca, 233-240 (1995)
[19] Francfort, G.; Marigo, J-J.: Revisiting brittle fracture as an energy minimization problem. J. mech. Phys. solids 46, No. 8, 1319-1342 (1998) · Zbl 0966.74060
[20] Hull, D., 1981. An Introduction to Composite Materials. Cambridge University Press, Cambridge, Solid State Science Series · Zbl 0472.76009
[21] Leblond, J-B.: Crack paths in plane situation--I, general form of the expansion of the stress intensity factors. Int. J. Solids structures 25, 1311-1325 (1989) · Zbl 0703.73062
[22] Leguillon, D.: Asymptotic and numerical analysis of a crack branching in non-isotropic materials. Eur. J. Mech. A/solids 12, No. 1, 33-51 (1993) · Zbl 0767.73053
[23] Modica, L.; Mortola, S.: Un esempio di ${\Gamma}$-convergenza. Boll. un. Mat. ital. 14B, 285-299 (1977) · Zbl 0356.49008
[24] Mumford, D.; Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. pure appl. Math. 42, 577-685 (1989) · Zbl 0691.49036