zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pinning control of scale-free dynamical networks. (English) Zbl 0995.90008
Summary: Recently, it has been demonstrated that many large complex networks display a scale-free feature, that is, their connectivity distributions have the power-law form. In the present work, control of a scale-free dynamical network by applying local feedback injections to a fraction of network nodes is investigated. The specifically and randomly pinning schemes are considered. The specifically pinning of the most highly connected nodes is shown to require a significantly smaller number of local controllers as compared to the randomly pinning scheme. The method is applied to an array of Chua’s oscillators as an example.

90B10Network models, deterministic (optimization)
Full Text: DOI
[1] K. Kaneko (Ed.), Coupled Map Lattices, World Scientific Pub. Co., Singapore, 1992. · Zbl 1055.37540
[2] L.O. Chua (Ed.), IEEE Trans. Circuits Syst. 42 (1995) 557.
[3] Strogatz, S. H.: Nature. 410, 268 (2001)
[4] Faloutsos, M.; Faloutsos, P.; Faloutsos, C.: Comput. commun. Rev.. 29, 251 (1999)
[5] Albert, R.; Jeong, H.; Barabási, A. -L.: Nature. 401, 130 (1999)
[6] Williams, R. J.; Martinez, N. D.: Nature. 404, 180 (2000)
[7] Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.; Barabási, A. -L.: Nature. 407, 651 (2000)
[8] Newman, M. E. J.: Proc. natl. Acad. sci.. 98, 404 (2001)
[9] Wassrman, S.; Faust, K.: Social network analysis. (1994)
[10] Erdos, P.; Renyi, A.: Publ. math. Inst. hung. Acad. sci.. 5, 17 (1960)
[11] Watts, D. J.; Strogatz, S. H.: Nature. 393, 440 (1998)
[12] Barabási, A. -L.; Albert, R.: Science. 286, 509 (1999)
[13] Barabási, A. -L.; Albert, R.; Jeong, H.: Physica A. 272, 173 (1999)
[14] Albert, R.; Jeong, H.; Barabási, A. -L.: Nature. 406, 387 (2000)
[15] Callway, D. S.; Newman, M. E. J.; Strogatz, S. H.; Watts, D. J.: Phys. rev. Lett.. 85, 5468 (2000)
[16] Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S.: Phys. rev. Lett.. 85, 4626 (2000)
[17] Wang, X. F.; Chen, G.: IEEE trans. Circuits syst. I. 49, 54 (2002)
[18] Hu, G.; Qu, Z.: Phys. rev. Lett.. 72, 68 (1994)
[19] Grigoriev, R. O.; Cross, M. C.; Schuster, H. G.: Phys. rev. Lett.. 79, 2795 (1997)
[20] Hu, G.: Phys. rev. E. 62, 3943 (2000)
[21] Albert, R.; Barabási, A. -L.: Phys. rev. Lett.. 85, 5234 (2000)
[22] Chua, L. O.; Wu, C. W.; Huang, A.; Zhong, G. Q.: IEEE trans. Circuits syst.. 40, 732 (1993)