zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaotic attractors in delayed neural networks. (English) Zbl 0995.92004
Summary: This paper investigates the complex dynamical behavior of delayed neural networks with two neurons with the help of computer simulations. It has been shown that such networks may exhibit chaotic dynamics undergoing a period-doubling bifurcation process. In some parameter domains, interesting phenomena of coexistence of periodic orbits and chaotic attractors have been observed.

92B20General theory of neural networks (mathematical biology)
37N25Dynamical systems in biology
65C20Models (numerical methods)
Full Text: DOI
[1] Hopfield, J. J.: Proc. nat. Acad. sci. USA. 81, 3088 (1984)
[2] Marcus, C. M.; Westervelt, R. M.: Phys. rev. A. 39, 229 (1989)
[3] Roska, T.; Chua, L. O.: Int. J. Circuit theory appl.. 20, 469 (1992)
[4] Gopalsamy, K.; He, X. Z.: Physica D. 76, 344 (1994)
[5] Belair, J.; Campbell, S. A.; Den Driessche, P. Van: SIAM J. Appl. math.. 56, 245 (1996)
[6] Baldi, P.; Atiya, A. F.: IEEE trans. Neural networks. 5, 612 (1994)
[7] Cao, Y. J.; Wu, Q. H.: IEEE trans. Neural networks. 7, 1533 (1996)
[8] Zhang, Y.: Int. J. Systems sci.. 27, No. 2, 227 (1996)
[9] Civalleri, P. P.; Gilli, M.; Pandolfi, L.: IEEE trans. Circuit systems I. 40, 157 (1993)
[10] Gilli, M.: IEEE trans. Circuit systems I. 40, 849 (1993)
[11] Gilli, M.: IEEE trans. Circuit systems I. 41, 518 (1994)
[12] Cao, J.; Zhou, D.: Neural networks. 11, 1601 (1998) · Zbl 0967.34067
[13] Cao, J.: Phys. lett. A. 261, 303 (1999)
[14] Cao, J.: Phys. lett. A. 267, 312 (2000)
[15] Cao, J.: Phys. lett. A. 270, 157 (1999)
[16] Hale, J.: Theory of functional differential equations. (1977) · Zbl 0352.34001
[17] Chua, L. O.; Komuro, M.; Matsumoto, T.: IEEE trans. Circuit systems. 33, 1073 (1986)