A note on the ordinal sum theorem and its consequence for the construction of triangular norms. (English) Zbl 0996.03508

Summary: The well-known ordinal sum theorem of semigroups is generalized and applied to construct new families of triangular subnorms and triangular norms (t-norms). Among them one can find several new families of left-continuous t-norms too.


03E72 Theory of fuzzy sets, etc.
Full Text: DOI


[1] Aczél, J., Sur LES opérations definies pour des nombres réels, Bull. soc. math. France, 76, 59-64, (1949) · Zbl 0033.11002
[2] Clifford, A.H., Naturally totally ordered commutative semigroups, Amer. J. math., 76, 631-646, (1954) · Zbl 0055.01503
[3] Climescu, A.C., Sur l’équation fonctionelle de l’associativité, Bull. école polytechn. iassy, 1, 1-16, (1946)
[4] R. Mesiar, B. De Baets, New construction methods for aggregation operators, Proc. 8th Internat. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (Madrid, Spain), Vol. II, 2000, pp. 701-706.
[5] Fodor, J.C., Contrapositive symmetry of fuzzy implications, Fuzzy sets and systems, 69, 141-156, (1995) · Zbl 0845.03007
[6] Fodor, J.C.; Roubens, M., Fuzzy preference modelling and multicriteria decision support, (1994), Kluwer Academic Publisher Dordrecht · Zbl 0827.90002
[7] Fodor, J.C.; Yager, R.R.; Rybalov, A., Structure of uninorms, Internat. J. uncertain. fuzziness knowledge-based systems, 5, 411-427, (1997) · Zbl 1232.03015
[8] Frank, M.J., On the simultaneous associativity of \(F(x,y)\) and \(x+y−F(x,y)\), Aequationes math., 19, 194-226, (1979) · Zbl 0444.39003
[9] Fuchs, L., Partially ordered algebraic systems, (1963), Pergamon Press Oxford, London, New York, Paris · Zbl 0137.02001
[10] Höhle, U.; Weber, S., On conditioning operators, () · Zbl 1032.28009
[11] Jenei, S., Fibred triangular norms, Fuzzy sets and systems, 103, 67-82, (1999) · Zbl 0946.26017
[12] Jenei, S., Generalized ordinal sum theorem and its consequence for the construction of triangular norms, Busefal, 80, 52-56, (1999)
[13] Jenei, S., New family of triangular norms via contrapositive symmetrization of residuated implications, Fuzzy sets and systems, 110, 157-174, (1999) · Zbl 0941.03059
[14] S. Jenei, The structure of Girard monoids on [0,1], Proceedings of the 20th Linz Seminar on Fuzzy Set Theory, Linz, Austria, 1999, pp. 21-33.
[15] Jenei, S., Structure of left-continuous t-norms with strong induced negations. (I) rotation construction, J. appl. non-classical logics, 10, 83-92, (2000) · Zbl 1033.03512
[16] Klement, E.P.; Mesiar, R.; Pap, E., Quasi- and pseudo-inverses of monotone functions and the construction of t-norms, Fuzzy sets and systems, 104, 3-13, (1999) · Zbl 0953.26008
[17] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms, monograph, (2000), Kluwer Academic Publisher Dordrecht
[18] Ling, C.-H., Representation of associative functions, Publ. math. debrecen, 12, 189-212, (1965) · Zbl 0137.26401
[19] Mostert, P.S.; Shields, A.L., On the structure of semigroups on a compact manifold with boundary, Ann. math., 65, 117-143, (1957) · Zbl 0096.01203
[20] Pap, E., Null-additive set functions, (1995), Kluwer Academic Publisher Dordrecht · Zbl 0856.28001
[21] Schweizer, B.; Sklar, A., Associative functions and abstract semigroups, Publ. math. debrecen, 10, 69-81, (1963) · Zbl 0119.14001
[22] Schweizer, B.; Sklar, A., Probabilistic metric spaces, (1983), North-Holland New York · Zbl 0546.60010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.