Benois, Denis On Iwasawa theory of crystalline representations. (English) Zbl 0996.11072 Duke Math. J. 104, No. 2, 211-267 (2000). J.-M. Fontaine [The Grothendieck Festschrift, Vol. II, Prog. Math. 87, 249-309 (1990; Zbl 0743.11066)] obtained a general approach to the classification of \(p\)-adic representations of local fields. His method is based on the relation between local fields of characteristic \(0\) and functional local fields, given by the field of norms functor. As an application he proved that the reciprocity law of S. Bloch and K. Kato [The Grothendieck Festschrift, Vol. I, Prog. Math. 86, 333-400 (1990; Zbl 0768.14001)] can be deduced from the explicit formula for Witt pairing in characteristic \(p\). In the paper under review the author applies the theory of Fontaine to Iwasawa theory of crystalline representations. In particular, for crystalline representations of finite height the explicit reciprocity law conjectured by B. Perrin-Riou [Invent. Math. 115, 81-149 (1994; Zbl 0838.11071)] is proved. There were some conjectures in order to obtain a complete result. One of them is the explicit reciprocity law that makes it possible to study \(p\)-adic \(L\) functions at negative integers. The conjecture has already been proved by K. Kato, M. Kurihara and T. Tsuji [Local Iwasawa theory of Perrin-Riou and syntomic complexes, preprint 1996] and by P. Colmez [Ann. Math. (2) 148, 485-571 (1998; Zbl 0928.11045)]. This third proof given by the author uses computation of Galois cohomology of \(p\)-adic representations using complexes of \(\Gamma\Phi\)-modules and classification of crystalline representations of finite height in terms of \(\Gamma\Phi\)-modules. By a result of P. Colmez [J. Reine Angew. Math. 514, 119-143 (1999; Zbl 1191.11032)] we have that all crystalline representations of \(G_F\), the absolute Galois group of a finite unramified extension \(F\) of \(\mathbb{Q}_p\), are of finite height. The paper includes a description of crystalline representations in terms of \(\Gamma\Phi\)-modules, rings of \(p\)-adic representations, the explicit reciprocity law of Coleman, Kummer’s homomorphism and the explicit reciprocity law of Perrin-Riou. Reviewer: Gabriel D.Villa-Salvador (México) Cited in 2 ReviewsCited in 14 Documents MSC: 11S15 Ramification and extension theory 11S25 Galois cohomology 11R23 Iwasawa theory Keywords:crystalline representations; integral representations of local fields of characteristic \(0\); Perrin-Riou reciprocity law; Galois cohomology; Kummer’s homomorphism; Iwasawa theory Citations:Zbl 0743.11066; Zbl 0768.14001; Zbl 0838.11071; Zbl 0928.11045; Zbl 1191.11032 PDF BibTeX XML Cite \textit{D. Benois}, Duke Math. J. 104, No. 2, 211--267 (2000; Zbl 0996.11072) Full Text: DOI References: [1] V. A. Abrashkin, The field of norms functor and the Brückner-Vostokov formula, Math. Ann. 308 (1997), 5–19. · Zbl 0895.11049 [2] Y. Amice and J. Vélu, “Distributions \(p\)-adiques associées aux séries de Hecke” in Journées Arithmétiques de Bordeaux (Bordeaux, 1974), Astérisque 24 –. 25 , Soc. Math. France, Montrouge, 1975, 119–131. · Zbl 0332.14010 [3] E. Artin and H. Hasse, Die beiden Ergänzungssätze zum Reziprozitätsgesetz der \(l^n\)-ten Einheitzwurzeln, Abh. Math. Sem. Univ. Hamburg 6 (1928), 146–162. · JFM 54.0191.05 [4] S. Bloch and K. Kato, “\(L\)-functions and Tamagawa numbers of motives” in The Grothendieck Festschrift, Vol. 1, Progr. Math. 86 , Birkhäuser, Boston, 1990, 333–400. · Zbl 0768.14001 [5] H. Brückner, “Eine explizite Formel zum Reziprozitätsgesetz für Primzahlexponenten \(p\)” in Algebraische Zahlentheorie (Oberwolfach, 1964), Bibliographisches Institut, Mannheim, 1967, 31–39. [6] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton, 1956. · Zbl 0075.24305 [7] F. Cherbonnier, Représentations \(p\)-adiques surconvergentes, thesis, Orsay, 1996. [8] F. Cherbonnier and P. Colmez, Représentations \(p\)-adiques surconvergentes, Invent. Math. 133 (1998), 581–661. · Zbl 0928.11051 [9] –. –. –. –., Théorie d’Iwasawa des représentations \(p\)-adiques d’un corps local, J. Amer. Math. Soc. 12 (1999), 241–268. · Zbl 0933.11056 [10] R. Coleman, Division values in local fields, Invent. Math. 53 (1979), 91–116. · Zbl 0429.12010 [11] –. –. –. –., The dilogarithm and the norm residue symbol, Bull. Soc. Math. France 109 (1981), 373–402. · Zbl 0493.12019 [12] –. –. –. –., Local units modulo circular units, Proc. Amer. Math. Soc. 89 (1983), 1–7. · Zbl 0528.12005 [13] P. Colmez, Théorie d’Iwasawa des représentations de de Rham d’un corps local, Ann. of Math. (2) 148 (1998), 485–571. JSTOR: · Zbl 0928.11045 [14] –. –. –. –., Représentations cristallines et représentations de hauteur finie, J. Reine Angew. Math. 514 (1999), 119–143. · Zbl 1191.11032 [15] J.-M. Fontaine, Sur certains types de représentations \(p\)-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. of Math. (2) 115 (1982), 529–577. JSTOR: · Zbl 0544.14016 [16] –. –. –. –., “Représentations \(p\)-adiques des corps locaux, I” in The Grothendieck Festschrift, Vol. 2, Progr. Math. 87 , Birkhäuser, Boston, 1990, 249–309. [17] –. –. –. –., Le corps des périodes \(p\)-adiques, Astérisque 223 (1994), 59–111. [18] –. –. –. –., Représentations \(p\)-adiques semi-stables, Astérisque 223 (1994), 113–184. [19] –. –. –. –., Sur un théorème de Bloch et Kato (lettre à B. Perrin-Riou), Invent. Math. 115 (1994), 151–161. · Zbl 0802.14010 [20] G. Henniart, Sur les lois de réciprocité explicites, I, J. Reine Angew. Math. 329 (1981), 177–203. · Zbl 0461.12011 [21] L. Herr, Sur la cohomologie galoisienne des corps \(p\)-adiques, Bull. Soc. Math. France 126 (1998), 563–600. · Zbl 0967.11050 [22] ——–, Une nouvelle approche de la dualité locale de Tate, preprint, Univ. Bordeaux 1, 1999. [23] K. Kato, The explicit reciprocity law and the cohomology of Fontaine-Messing, Bull. Soc. Math. France 119 (1991), 397–441. · Zbl 0752.14015 [24] –. –. –. –., “Lectures on the approach to Iwasawa theory for Hasse-Weil \(L\)-functions via \(B_dR\), I” in Arithmetic Algebraic Geometry (Trento, 1991), Notes in Math. 1553 , Springer, Berlin, 1993, 50–163. [25] K. Kato, M. Kurihara, and T. Tsuji, Local Iwasawa theory of Perrin-Riou and syntomic complexes, preprint, 1996. [26] M. Kurihara, Computation of the syntomic regulator in the cyclotomic case, appendix to: M. Gros, Régulateurs syntomiques et valeurs de fonctions \(L\) \(p\)-adiques, I, Invent. Math. 99 (1990), 293–320. · Zbl 0667.14006 [27] B. Perrin-Riou, Théorie d’Iwasawa et hauteurs \(p\)-adiques, Invent. Math. 109 (1992), 137–185. · Zbl 0781.14013 [28] –. –. –. –., Théorie d’Iwasawa des représentations \(p\)-adiques sur un corps local, Invent. Math. 115 (1994), 81–149. · Zbl 0838.11071 [29] –. –. –. –., Théorie d’Iwasawa et loi explicite de réciprocité, Doc. Math. 4 (1999), 219–273., available from http://www.mathematik.uni-bielefeld.de/documenta/. [30] J.-P. Serre, Corps locaux, 2d ed., Publ. Inst. Math. Univ. Nancago 8 , Hermann, Paris, 1968. [31] I. R. Shafarevic, A general reciprocity law, Amer. Math. Soc. Transl. 4 (1956), 73–105. [32] E. de Shalit, “The explicit reciprocity law of Bloch-Kato” in Columbia University Number Theory Seminar (New York, 1992), Astérisque 228 , Soc. Math. France, Montrouge, 1995, 197–221. · Zbl 0832.14012 [33] J. Tate, Relations between \(K_2\) and Galois cohomology, Invent. Math. 36 (1976), 257–274. · Zbl 0359.12011 [34] S. V. Vostokov, Explicit form of the law of reciprocity, Math. USSR-Izv. 13 (1979), 557–588. · Zbl 0467.12018 [35] N. Wach, Représentations \(p\)-adiques potentiellement cristallines, Bull. Soc. Math. France 124 (1996), 375–400. · Zbl 0887.11048 [36] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann. Sci. École Norm. Sup. (4) 16 (1983), 59–89. · Zbl 0516.12015 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.