zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New transformations and new approach to find exact solutions to nonlinear equations. (English) Zbl 0996.35044
Summary: New transformations from the nonlinear sine-Gordon equation are shown based on them a new approach is proposed to construct exact periodic solutions to nonlinear equations. It is shown that more new periodic solutions can be obtained by this new approach and more shock wave solutions or solitary wave solutions under their limit condition.

35L70Nonlinear second-order hyperbolic equations
35Q53KdV-like (Korteweg-de Vries) equations
Full Text: DOI
[1] Yan, C. T.: Phys. lett. A. 224, 77 (1996)
[2] Wang, M. L.: Phys. lett. A. 199, 169 (1995)
[3] Wang, M. L.; Zhou, Y. B.; Li, Z. B.: Phys. lett. A. 216, 67 (1996)
[4] Yang, L.; Zhu, Z.; Wang, Y.: Phys. lett. A. 260, 55 (1999)
[5] Yang, L.; Liu, J.; Yang, K.: Phys. lett. A. 278, 267 (2001)
[6] Parkes, E. J.; Duffy, B. R.: Phys. lett. A. 229, 217 (1997) · Zbl 1043.35521
[7] Fan, E. G.: Phys. lett. A. 277, 212 (2000)
[8] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q.: Phys. lett. A. 289, 69 (2001)
[9] Fu, Z. T.; Liu, S. K.; Liu, S. D.; Zhao, Q.: Phys. lett. A. 290, 72 (2001)
[10] Hirota, R.: J. math. Phys.. 14, 810 (1973)
[11] Kudryashov, N. A.: Phys. lett. A. 147, 287 (1990)
[12] Otwinowski, M.; Paul, R.; Laidlaw, W. G.: Phys. lett. A. 128, 483 (1988)
[13] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q.: Appl. math. Mech.. 22, 326 (2001)
[14] Porubov, A. V.: Phys. lett. A. 221, 391 (1996)
[15] Porubov, A. V.; Velarde, M. G.: J. math. Phys.. 40, 884 (1999)
[16] Porubov, A. V.; Parker, D. F.: Wave motion. 29, 97 (1999)
[17] Bowman, F.: Introduction to elliptic functions with applications. (1959) · Zbl 0052.07102
[18] Prasolov, V.; Solovyev, Y.: Elliptic functions and elliptic integrals. (1997) · Zbl 0946.11001