Kaya, Dogan; Aassila, Mohammed An application for a generalized KdV equation by the decomposition method. (English) Zbl 0996.35061 Phys. Lett., A 299, No. 2-3, 201-206 (2002). Summary: The explicit solutions to a generalized Korteweg-de Vries equation (KdV for short) with initial condition are calculated by using the Adomian decomposition method. Using this approach we obtained for the numerical solutions of initial-value KdV equation. Numerical illustrations on the well-known KdV equation with the rational and solitary wave solutions indicate that the decomposition method is efficient and accurate. In addition, an illustration of the self canceling phenomena is also given. Cited in 39 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) Keywords:initial condition; rational solutions; solitary wave solutions PDF BibTeX XML Cite \textit{D. Kaya} and \textit{M. Aassila}, Phys. Lett., A 299, No. 2--3, 201--206 (2002; Zbl 0996.35061) Full Text: DOI References: [1] Drazin, P. G.; Johnson, R. S., Solutions: An Introduction (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0661.35001 [2] Whitham, G. B., Linear and Nonlinear Waves (1974), John Wilney and Sons · Zbl 0373.76001 [3] Guenther, R. B.; Lee, J. W., Partial Differential Equations of Mathematical Physics and Integral Equations (1988), Dover Publications: Dover Publications New York [4] Adomian, G., Appl. Math. Comput., 88, 131 (1997) [5] Kaya, D., Int. J. Comp. Math., 72, 531 (1999) [6] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0802.65122 [7] Adomian, G., J. Math. Anal. Appl., 135, 501 (1988) [8] Adomian, G., Nonlinear Stochastic Operator Equations (1986), Academic Press: Academic Press San Diego, CA · Zbl 0614.35013 [9] Korteweg, D. J.; de Vries, G., Philos. Mag., 39, 422 (1895) [10] Shen, M. C., SIAM J. Appl. Math., 17, 260 (1969) [11] Gardner, C. S., J. Math. Phys., 12, 1548 (1971) [12] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Comm. Pure Appl. Math., XXVII, 97 (1974) [13] Yalcinkaya, M.; Saygili, H., Balkan Phys. Lett., 5, 69 (1997) [14] Seng, V.; Abbaoui, K.; Cherruault, Y., Math. Comput. Modelling, 24, 59 (1996) [15] Wazwaz, A. M., Appl. Math. Comput., 102, 77 (1999) [16] Saucez, P.; Wouwer, A. V.; Schiesser, W. E., Comput. Math. Appl., 35, 13 (1998) [17] Adomian, G.; Rach, R., Comput. Math. Appl., 24, 61 (1992) [18] Wazwaz, A. M., J. Math. Anal. Appl., 5, 265 (1997) [19] Cherruault, Y., Kybernetes, 18, 31 (1989) [20] Rèpaci, A., Appl. Math. Lett., 3, 35 (1990) [21] Cherruault, Y.; Adomian, G., Math. Comput. Modeling, 18, 103 (1993) [22] Abbaoui, K.; Cherruault, Y., Comput. Math. Appl., 28, 103 (1994) [23] Abbaoui, K.; Cherruault, Y., Comput. Math. Appl., 29, 103 (1995) [24] Abbaoui, K.; Pujol, M. J.; Cherruault, Y.; Himoun, N.; Grimalt, P., Kybernetes, 30, 1183 (2001) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.