×

On the dimensions of certain incommensurably constructed sets. (English) Zbl 0996.37022

Summary: It is known that the Hausdorff dimension of the invariant set \(\Lambda_t\) of an iterated function system \({\mathcal F}_t\) on \(\mathbb{R}^n\) depending smoothly on a parameter \(t\) varies lower-semicontinuously, but not necessarily continuously. For a specific family of systems we investigate numerically the conjecture that discontinuities in the dimension only arise when in some iterate of the iterated function system two or more branches coincide. This happens in a dense set of codimension one. All other points are conjectured to be points of continuity.

MSC:

37C45 Dimension theory of smooth dynamical systems
28A80 Fractals
PDFBibTeX XMLCite
Full Text: DOI Euclid EuDML

References:

[1] Hacon D., Experiment. Math. 3 (4) pp 317– (1994) · Zbl 0838.52021 · doi:10.1080/10586458.1994.10504300
[2] Hutchinson J. E., Indiana Univ. Math. J. 30 (5) pp 713– (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[3] Keane M., ”{\(\beta\)}-expansions” (1997)
[4] Kenyon R., Israel J. Math. 97 pp 221– (1997) · Zbl 0871.28006 · doi:10.1007/BF02774038
[5] Kenyon R., Indiana Univ. Math. J. 48 (1) pp 25– (1999)
[6] King J. F., Adv. Math. 116 (1) pp 1– (1995) · Zbl 0845.28007 · doi:10.1006/aima.1995.1061
[7] Lagarias J. C., J. London Math. Soc. (2) 54 (1) pp 161– (1996) · Zbl 0893.52014 · doi:10.1112/jlms/54.1.161
[8] Lau K.-S., J. Funct. Anal. 116 (2) pp 335– (1993) · Zbl 0788.60055 · doi:10.1006/jfan.1993.1116
[9] Oxtoby J. C., Measure and category: A survey of the analogies between topological and measure spaces,, 2. ed. (1980) · Zbl 0435.28011
[10] Pollicott M., Trans. Amer. Math. Soc. 347 (3) pp 967– (1995) · Zbl 0831.28005 · doi:10.2307/2154881
[11] Rao H., Adv. in Appl. Math. 20 (1) pp 50– (1998) · Zbl 0894.28003 · doi:10.1006/aama.1997.0560
[12] Solomyak B., Ann. of Math. (2) 142 (3) pp 611– (1995) · Zbl 0837.28007 · doi:10.2307/2118556
[13] Veerman J. J. P., Bol. Soc. Brasil. Mat. (N.S.) 26 (2) pp 167– (1995) · Zbl 0853.58066 · doi:10.1007/BF01236992
[14] Veerman, J. J. P. ”Two-dimensional generalizations of Haar bases”. International Conference on Dynamical Systems. 1995, Montevideo. Edited by: Ledrappier, F. pp.220–235. 362Harlow: Longman. [Veerman 1996], Pitman Res. Notes in Math · Zbl 0879.28017
[15] Veerman J. J. P., Bol. Soc. Mat. Mexicana(3) 4 (2) pp 159– (1998)
[16] Veerman J. J. P., ”Rigidity properties of locally scaling fractals” (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.