zbMATH — the first resource for mathematics

Cesàro wedge and weak Cesàro wedge \(FK\)-spaces. (English) Zbl 0996.46004
Summary: We deal with Cesàro wedge and weak Cesàro wedge \(FK\)-spaces, and give several characterizations. Some applications of these spaces to general summability domains are also studied.

46A35 Summability and bases in topological vector spaces
46A45 Sequence spaces (including Köthe sequence spaces)
47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
40C05 Matrix methods for summability
Full Text: DOI EuDML
[1] G. Bennett: The Glinding Humps technique for \(FK\)-spaces. Trans. Amer. Math. Soc. 166 (1972), 285-292. · Zbl 0237.40012
[2] G. Bennett: A new class of sequence spaces with applications in summability theory. J. Reine Angew. Math. 266 (1974), 49-75. · Zbl 0277.46012
[3] N. Dunford and J. T. Schwartz: Linear Operators. Interscience Publishers, New York, 1958.
[4] G. Goes and S. Goes: Sequences of bounded variation and sequences of Fourier coefficients. I. Math. Z. 118 (1970), 93-102. · Zbl 0193.02903
[5] G. Goes: Sequences of bounded variation and sequences of Fourier coefficients. II. J. Math. Anal. Appl. 39 (1972), 477-494. · Zbl 0242.42006
[6] P. K. Kamthan and M. Gupta: Sequence Spaces and Series. Marcel Dekker, New York, Basel, 1981. · Zbl 0447.46002
[7] K. Knopp and G. G. Lorentz: Beiträge zur absoluten Limitierung. Arch. Math. 2 (1949), 10-16. · Zbl 0041.18402
[8] G. Köthe: Topological Vector Spaces I. Springer-Verlag, New York, 1969. · Zbl 0179.17001
[9] A. P. Robertson and W. J. Robertson: Topological Vector Spaces. University Press, Cambridge, 1964. · Zbl 0123.30202
[10] A. K. Snyder: An embedding property of sequence spaces related to Meyer-König and Zeller type theorems. Indiana Univ. Math. J. 35 (1986), 669-679. · Zbl 0632.46007
[11] A. K. Snyder and A. Wilansky: Inclusion theorems and semiconservative \(FK\)-spaces. Rocky Mountain J. Math. 2 (1972), 595-603. · Zbl 0267.40002
[12] A. Wilansky: Functional Analysis. Blaisdell Press, New York-Toronto-London, 1964. · Zbl 0136.10603
[13] A. Wilansky: Summability Through Functional Analysis. North Holland, Amsterdam-New York-Oxford, 1984. · Zbl 0531.40008
[14] K. Zeller: Allgemeine Eigenschaften von Limitierungsverfahren. Math. Z. 53 (1951), 463-487. · Zbl 0045.33403
[15] K. Zeller: Theorie der Limitierungsverfahren. Springer-Verlag, Berlin-Göttingen-Heidel-berg, 1958. · Zbl 0085.04603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.