On invertible substitutions with two fixed points. (English. Abridged French version) Zbl 0996.68149

Summary: Let \(\varphi\) be a primitive substitution on a two-letter alphabet \(\{a,b\}\) having two fixed points \(\xi_a\) and \(\xi_b\). We show that the substituion \(\varphi\) is invertible if and only if one has \(\xi_a= ab\xi\) and \(\xi_b= ba\xi\).


68R15 Combinatorics on words
68Q45 Formal languages and automata
Full Text: DOI


[2] Ei, H.; Ito, S., Decomposition theorem for invertible substitution, Osaka J. Math., 34, 821-834 (1998) · Zbl 0924.20040
[4] Mignosi, F.; Séébold, P., Morphismes sturmiens et règles de Rauzy, J. Théorie des Nombres de Bordeaux, 5, 221-233 (1993) · Zbl 0797.11029
[5] Nielsen, J., Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann., 78, 385-397 (1918) · JFM 46.0175.01
[6] Séébold, P., Fibonacci morphisms and Sturmian words, Theoret. Comput. Sci., 88, 365-384 (1991) · Zbl 0737.68068
[7] Wen, Z.-X.; Wen, Z.-Y., Local isomorphism of the invertible substitutions, C. R. Acad. Sci. Paris, Série I, 318, 299-304 (1994) · Zbl 0812.11018
[8] Wen, Z.-X.; Wen, Z.-Y., Some properties of the singular words of the Fibonacci word, European J. Combin., 15, 587-598 (1994) · Zbl 0823.68087
[9] Wen, Z.-X.; Wen, Z.-Y., Factor properties of infinite words generated by a class of invertible substitution, (5th Conference Formal Power Series and Algebraic Combinatorics (1993), Florence), 455-466
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.