Electric-magnetic duality, monopole condensation, and confinement in \(N=2\) supersymmetric Yang-Mills theory. (English) Zbl 0996.81510

Summary: We study the vacuum structure and dyon spectrum of \(N=2\) supersymmetric gauge theory in four dimensions, with gauge group SU(2). The theory turns out to have remarkably rich and physical properties which can nonetheless be described precisely; exact formulas can be obtained, for instance, for electron and dyon masses and the metric on the moduli space of vacua. The description involves a version of Olive-Montonen electric-magnetic duality. The “strongly coupled” vacuum turns out to be a weakly coupled theory of monopoles, and with a suitable perturbation confinement is described by monopole condensation.


81T60 Supersymmetric field theories in quantum mechanics
11Z05 Miscellaneous applications of number theory
14H52 Elliptic curves
81T13 Yang-Mills and other gauge theories in quantum field theory
Full Text: DOI arXiv


[1] Seiberg, N., Phys. lett. B, 318, 469, (1993)
[2] Seiberg, N., Phys. rev. D, 49, 6857, (1994), hep-th/9402044
[3] K. Intriligator, R. Leigh and N. Seiberg, hep-th/9403198, RU-94-26, Phys. Rev. in press.
[4] V. Kaplunovsky and J. Louis, hep-th/9402005.
[5] Shifman, M.A.; Vainshtein, A.I.; Shifman, M.A.; Vainshtein, A.I., Nucl. phys. B, Nucl. phys. B, 359, 571, (1991)
[6] Amati, D.; Konishi, K.; Meurice, Y.; Rossi, G.C.; Veneziano, G., Phys. rep., 162, 169, (1988), and references therein
[7] N. Seiberg and E. Witten, to appear.
[8] Witten, E., Commun. math. phys., 117, 353, (1988)
[9] E. Witten, IASSNS-HEP-94-5, hep-th/9403195.
[10] Prasad, M.K.; Sommerfield, C.M., Phys. rev. lett., 35, 760, (1975)
[11] Bogomol’nyi, E.B., Sov. J. nucl. phys., 24, 449, (1976)
[12] Witten, E.; Olive, D., Phys. lett. B, 78, 97, (1978)
[13] Montonen, C.; Olive, D.; Goddard, P.; Nuyts, J.; Olive, D., Phys. lett. B, Nucl. phys. B, 125, 1, (1977)
[14] Osborn, H., Phys. lett. B, 83, 321, (1979)
[15] Cardy, J.; Rabinovici, E.; Cardy, J., Nucl. phys. B, Nucl. phys., B205, 17, (1982)
[16] Shapere, A.; Wilczek, F., Nucl. phys. B, 320, 669, (1989)
[17] Font, A.; Ibanez, L.; Lüst, D.; Quevedo, F., Phys. lett. B, 249, 35, (1990)
[18] A. Sen, TIFR-TH-94-08, hep-th/9402002.
[19] G. Segal, to appear.
[20] L. Girardello, A. Giveon, M. Porrati and A. Zaffaroni, NYU-TH-94/06/02, IFUM/472/FT, SISSA 80/94/EP, RI-6-94, hep-th/9406128.
[21] C. Vafa and E. Witten, to appear.
[22] Seiberg, N., Phys. lett. B, 206, 75, (1988)
[23] De Wit, B.; van Proeyen, A., Nucl. phys. B, 245, 89, (1984)
[24] Ferrara, S., Mod. phys. lett., A6, 2175, (1991)
[25] Strominger, A., Commun. math. phys., 133, 163, (1990)
[26] Candelas, P.; de la Ossa, X., Nucl. phys. B, 355, 455, (1991)
[27] Cecotti, S.; Fendley, P.; Intriligator, K.; Vafa, C.; Cecotti, S.; Vafa, C., Nucl. phys. B, Commun. math. phys., 158, 569, (1993)
[28] Wess, J.; Bagger, J., Supersymmetry and supergravity, (1982), Princeton Univ. Press Princeton
[29] For a review, see A. Giveon, M. Porrati and E. Rabinovici, RI-1-94, hep-th/9401139.
[30] Witten, E., Phys. lett. B, 86, 283, (1979)
[31] N. Seiberg, to appear.
[32] Witten, E., Nucl. phys. B, 202, 253, (1982)
[33] Clemens, C.H., A scrapbook of complex curve theory, (1980), Plenum New York · Zbl 0456.14016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.