Merkl, Franz; Wüthrich, Mario V. Infinite volume asymptotics of the ground state energy in a scaled Poissonian potential. (English) Zbl 0996.82036 Ann. Inst. Henri Poincaré, Probab. Stat. 38, No. 3, 253-284 (2002). The authors investigate the ground state energy of the random Schrödinger operator \(-\frac{1}{2}\Delta+\beta (\log t)^{-2/d}V\) on the box \((-t,t)^{d}\) with Dirichlet boundary conditions. Here \(V\) is the Poissonian potential obtained by translation a fixed non-negative compactly supported shape function to all the particles of \(d\)-dimensional Poissonian point process, the scaling function \((\log t)^{-2/d}\) is determined by the typical size of the largest hole of the Poissonian cloud in the box \((-t,t)^{d}.\) Reviewer: Boris V.Loginov (Ulyanovsk) Cited in 3 ReviewsCited in 6 Documents MSC: 82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics 60K35 Interacting random processes; statistical mechanics type models; percolation theory Keywords:random Schrödinger operator; ground state energy PDFBibTeX XMLCite \textit{F. Merkl} and \textit{M. V. Wüthrich}, Ann. Inst. Henri Poincaré, Probab. Stat. 38, No. 3, 253--284 (2002; Zbl 0996.82036) Full Text: DOI Numdam EuDML