×

A linear operator and associated families of meromorphically multivalent functions. (English) Zbl 0997.30009

Let \(\Sigma_p\) denote the class of functions \(f(z)\) which are analytic and \(p\)-valent in the punctured unit disk \[ {\mathcal U}^*={\mathcal U}\setminus\{0\},\quad {\mathcal U}= \{z:|z|< 1\}. \] For the given real numbers \(a,c-c\not\in\mathbb{N}\) we can define a linear operator \[ {\mathcal L}_p(a, c) f(z):= \phi_p(a,c;z)* f(z),\quad(f\in\Sigma_p) \] where \(*\) is a convolution (Hadamard product) and \(\phi_p(a,c;z)\) is a special function defined as follows \[ \phi_p(a,c;z):= z^{-p}+ \sum^\infty_{k=1} {(a)_k\over (c)_k} z^{k- p}. \] For the given fixed parameters \(p\), \(a\), \(c\), \(A\), \(B\), \(-1\leq B< A\leq 1\), we say that a function \(f\in\Sigma_p\) is in the class \({\mathcal H}_{a,c}(p;A,B)\) if it also satisfies the inequality \[ \Biggl|{z({\mathcal L}_p(a,c) f(z))'+ p{\mathcal L}_p(a,c) f(z)\over Bz({\mathcal L}_p(a, c) f(z))'+ Ap{\mathcal L}_p(a, c) f(z)}\Biggr|< 1\quad\text{for }z\in{\mathcal U}. \] In this paper some properties of the classes \({\mathcal H}_{a,c}(p;A,B)\) and the operators \({\mathcal L}_p(a,c)f\) are investigated. Among others it is proved: Theorem. If \(a\geq {p(A-B)\over B+1}\), then \({\mathcal H}_{a+1,c}(p;A,B)\subset{\mathcal H}_{a,c}(p;A,B)\).

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altintaş, O.; Owa, S., Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. Math. Sci., 19, 797-800 (1996) · Zbl 0915.30008
[2] Altintaş, O.; Özkan, Ö.; Srivastava, H. M., Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett., 13, 63-67 (2000) · Zbl 0955.30015
[3] Carlson, B. C.; Shaffer, D. B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15, 737-745 (1984) · Zbl 0567.30009
[4] Dziok, J.; Srivastava, H. M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103, 1-13 (1999) · Zbl 0937.30010
[5] Goodman, A. W., Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8, 598-601 (1957) · Zbl 0166.33002
[6] Jack, I. S., Functions starlike and convex of order α, J. London Math. Soc. (2), 3, 469-474 (1971) · Zbl 0224.30026
[7] Joshi, S. B.; Srivastava, H. M., A certain family of meromorphically multivalent functions, Comput. Math. Appl., 38, 201-211 (1999) · Zbl 0959.30010
[8] Mogra, M. L., Meromorphic multivalent functions with positive coefficients, I and II, Math. Japon., 35, 1-11 (1990) · Zbl 0705.30019
[9] Ruscheweyh, S., Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81, 521-527 (1981) · Zbl 0458.30008
[10] Saitoh, H., A linear operator and its applications of first order differential subordinations, Math. Japon., 44, 31-38 (1996) · Zbl 0887.30021
[11] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51, 109-116 (1975) · Zbl 0311.30007
[12] Srivastava, H. M.; Hossen, H. M.; Aouf, M. K., A unified presentation of some classes of meromorphically multivalent functions, Comput. Math. Appl., 38, 63-70 (1999) · Zbl 0978.30011
[13] Srivastava, H. M.; Owa, S., Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J., 106, 1-28 (1987) · Zbl 0607.30014
[14] Srivastava, H. M.; Owa, S., Current Topics in Analytic Function Theory (1992), World Scientific: World Scientific Singapore · Zbl 0976.00007
[15] Yang, D.-G., On new subclasses of meromorphic \(p\)-valent functions, J. Math. Res. Exposition, 15, 7-13 (1995) · Zbl 1108.30309
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.