×

Complexiton solutions to the Korteweg-de Vries equation. (English) Zbl 0997.35066

Summary: A novel class of explicit exact solutions to the Korteweg-de Vries equation is presented through its bilinear form. Such solutions possess singularities of combinations of trigonometric function waves and exponential function waves which have different travelling speeds of new type. The functions used in the Wronskian determinants are derived from eigenfunctions of the Schrödinger spectral problem associated with complex eigenvalues, and thus the resulting solutions are called complexiton solutions. Illustrative examples of complexiton solutions are exhibited.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Drazin, P. G.; Johnson, R. S., Solitons: An Introduction (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0661.35001
[2] Miura, R. M.; Gardner, C. S.; Kruskal, M. D., J. Math. Phys., 9, 1204 (1968)
[3] Magri, F., J. Math. Phys., 19, 1156 (1978)
[4] Zakharov, V. E.; Faddeev, L. D., Functional Anal. Appl., 5, 280 (1971)
[5] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Comm. Pure Appl. Math., 27, 97 (1974)
[6] Ablowitz, M. J.; Segur, H., Solitons and the Inverse Scattering Transform (1981), SIAM: SIAM Philadelphia · Zbl 0299.35076
[7] Hirota, R., Phys. Rev. Lett., 27, 1192 (1971)
[8] Satsuma, J., J. Phys. Soc. Jpn., 46, 359 (1979)
[9] Ablowitz, M. J.; Satsuma, J., J. Math. Phys., 19, 2180 (1978)
[10] Matveev, V. B., Phys. Lett. A, 166, 205 (1992)
[11] Kovalyov, M., Nonlinear Anal., 31, 599 (1998)
[12] Rasinariu, C.; Sukhatme, U.; Khare, A., J. Phys. A, 29, 1803 (1996)
[13] Freeman, N. C.; Nimmo, J. J.C., Proc. R. Soc. London A, 389, 319 (1983)
[14] Arkad’ev, V. A.; Pogrebkov, A. K.; Polivanov, M. K., Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 133, 17 (1984)
[15] Sirianunpiboon, S.; Howard, S. D.; Roy, S. K., Phys. Lett. A, 134, 31 (1988)
[16] Au, C.; Fung, P. C., J. Math. Phys., 25, 1364 (1984)
[17] Ma, W. X.; Fuchssteiner, B., Phys. Lett. A, 213, 49 (1996) · Zbl 0863.35106
[18] Ma, W. X.; Geng, X. G., Phys. Lett. B, 475, 56 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.