zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complexiton solutions to the Korteweg-de Vries equation. (English) Zbl 0997.35066
Summary: A novel class of explicit exact solutions to the Korteweg-de Vries equation is presented through its bilinear form. Such solutions possess singularities of combinations of trigonometric function waves and exponential function waves which have different travelling speeds of new type. The functions used in the Wronskian determinants are derived from eigenfunctions of the Schrödinger spectral problem associated with complex eigenvalues, and thus the resulting solutions are called complexiton solutions. Illustrative examples of complexiton solutions are exhibited.

35Q53KdV-like (Korteweg-de Vries) equations
Full Text: DOI
[1] Drazin, P. G.; Johnson, R. S.: Solitons: an introduction. (1989) · Zbl 0661.35001
[2] Miura, R. M.; Gardner, C. S.; Kruskal, M. D.: J. math. Phys.. 9, 1204 (1968)
[3] Magri, F.: J. math. Phys.. 19, 1156 (1978)
[4] Zakharov, V. E.; Faddeev, L. D.: Functional anal. Appl.. 5, 280 (1971)
[5] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M.: Comm. pure appl. Math.. 27, 97 (1974)
[6] Ablowitz, M. J.; Segur, H.: Solitons and the inverse scattering transform. (1981) · Zbl 0472.35002
[7] Hirota, R.: Phys. rev. Lett.. 27, 1192 (1971)
[8] Satsuma, J.: J. phys. Soc. jpn.. 46, 359 (1979)
[9] Ablowitz, M. J.; Satsuma, J.: J. math. Phys.. 19, 2180 (1978)
[10] Matveev, V. B.: Phys. lett. A. 166, 205 (1992)
[11] Kovalyov, M.: Nonlinear anal.. 31, 599 (1998)
[12] Rasinariu, C.; Sukhatme, U.; Khare, A.: J. phys. A. 29, 1803 (1996)
[13] Freeman, N. C.; Nimmo, J. J. C.: Proc. R. Soc. London A. 389, 319 (1983)
[14] Arkad’ev, V. A.; Pogrebkov, A. K.; Polivanov, M. K.: Zap. nauchn. Sem. leningrad. Otdel. mat. Inst. Steklov (LOMI). 133, 17 (1984)
[15] Sirianunpiboon, S.; Howard, S. D.; Roy, S. K.: Phys. lett. A. 134, 31 (1988)
[16] Au, C.; Fung, P. C.: J. math. Phys.. 25, 1364 (1984)
[17] Ma, W. X.; Fuchssteiner, B.: Phys. lett. A. 213, 49 (1996) · Zbl 0863.35106
[18] Ma, W. X.; Geng, X. G.: Phys. lett. B. 475, 56 (2000)