zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Compactons dispersive structures for variants of the $K(n,n)$ and the KP equations. (English) Zbl 0997.35083
Summary: We discuss two generalized forms of the $K(n,n)$ and the KP equations that exhibit compactons: solitons with the absence of infinite wings, and solitary patterns solutions having infinite slopes or cusps. The variants are extended to include nonlinear dispersion to support compactons structures and solitary patterns in higher dimensions. Two distinct general formulas for compact and noncompact solutions, that are of substantial interest, are formally developed.

35Q53KdV-like (Korteweg-de Vries) equations
37K40Soliton theory, asymptotic behavior of solutions
Full Text: DOI
[1] Dinda, P. T.; Remoissenet, M.: Breather compactons in nonlinear Klein--Gordon systems. Phys. rev. E 60, No. 3, 6218-6221 (1999)
[2] Rosenau, P.; Hyman, J. M.: Compactons: solitons with finite wavelengths. Phys. rev. Lett. 70, No. 5, 564-567 (1993) · Zbl 0952.35502
[3] Rosenau, P.: Nonlinear dispersion and compact structures. Phys. rev. Lett. 73, No. 13, 1737-1741 (1994) · Zbl 0953.35501
[4] Rosenau, P.: On nonanalytic solitary waves formed by a nonlinear dispersion. Phys. lett. A 230, No. 5/6, 305-318 (1997) · Zbl 1052.35511
[5] Rosenau, P.: Compact and noncompact dispersive structures. Phys. lett. A 275, No. 3, 193-203 (2000) · Zbl 1115.35365
[6] Olver, P. J.; Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. rev. E 53, No. 2, 1900-1906 (1996)
[7] Dusuel, S.; Michaux, P.; Remoissenet, M.: From kinks to compactonlike kinks. Phys. rev. E 57, No. 2, 2320-2326 (1998)
[8] Ludu, A.; Draayer, J. P.: Patterns on liquid surfaces: cnoidal waves, compactons and scaling. Physica D 123, 82-91 (1998) · Zbl 0952.76008
[9] Ismail, M. S.; Taha, T.: A numerical study of compactons. Math. comput. Simulation 47, 519-530 (1998) · Zbl 0932.65096
[10] Wazwaz, A. M.: New solitary-wave special solutions with compact support for the nonlinear dispersive $K(m,n)$ equations. Chaos, solitons & fractals 13, 321-330 (2002) · Zbl 1028.35131
[11] Wazwaz, A. M.: Exact special solutions with solitary patterns for the nonlinear dispersive $K(m,n)$ equations. Chaos, solitons & fractals 13, 161-170 (2002) · Zbl 1027.35115
[12] Wazwaz AM. General compactons solutions for the focusing branch of the nonlinear dispersive K(n,n) equations in higher-dimensional spaces. Chaos, Solitons & Fractals 2002 [to appear] · Zbl 1027.35117
[13] Wazwaz AM. General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive K(n,n) equations in higher-dimensional spaces. Chaos, Solitons & Fractals 2002 [to appear] · Zbl 1027.35118
[14] Wazwaz AM. Compactons dispersive structures for a variant of the KP equation in higher dimensions. Math. Comput. Simulation 2002 [to appear]
[15] Wazwaz AM. A computational approach to soliton solutions of the Kadomtsev--Petviashili equation. Appl. Math. Comput. 2002 [to appear]
[16] Wazwaz, A. M.: Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos, solitons & fractals 12, 1549-1556 (2001) · Zbl 1022.35051
[17] Wazwaz, A. M.: A first course in integral equations. (1997) · Zbl 0924.45001
[18] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[19] Adomian, G.: A review of the decomposition method in applied mathematics. J. math. Anal. appl. 135, 501-544 (1998) · Zbl 0671.34053