zbMATH — the first resource for mathematics

On the relation between gnostical and probability theories. (English) Zbl 0997.62508
62A01 Foundations and philosophical topics in statistics
62B10 Statistical aspects of information-theoretic topics
62F99 Parametric inference
Full Text: Link EuDML
[1] S. Amari: Differential–Geometrical Methods in Statistics. (Lecture Notes in Statistics 28.) Springer-Verlag, Berlin–Heidelberg–New York 1985. · Zbl 0559.62001
[2] T. M. Cover, J. A. Thomas: Elements of Information Theory. Wiley, New York–London 1991. · Zbl 0762.94001
[3] Z. Fabián: Point estimation in case of small data sets. Trans. 10th Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes, Academia, Prague 1988, pp. 305-312.
[4] Z. Fabián: Generalized score function and its use. Trans. 12th Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes, ÚTIA AV ČR, Prague 1994.
[5] Z. Fabián: Information and entropy of continuous random variables. IEEE Trans. Inform. Theory 43 (1997), 3. · Zbl 0880.94004 · doi:10.1109/18.568724
[6] Z. Fabián: Geometric Moments. Techn. Report No. V-699, ICS AS CR, Prague 1996.
[7] Z. Fabián: Geometric moments. Trans. ROBUST’96, JČMF, Prague 1997.
[8] F. R. Hampel P. J. Rousseeuw E. M. Ronchetti, W. A. Stahel: Robust Statistic. The Approach Based on Influence Functions. Wiley, New York 1987.
[9] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry. Interscience Publishers, New York–London 1963. · Zbl 0119.37502
[10] P. Kovanic: Gnostical theory of individual data. Problems Control Inform. Theory 13 (1984), 4, 259-274. · Zbl 0575.94005
[11] P. Kovanic: Gnostical theory of small samples of real data. Problems Control Inform. Theory 13 (1984), 5, 303-319. · Zbl 0583.94008
[12] P. Kovanic: On relation between information and physics. Problems Control Inform. Theory 13 (1984), 6, 383-399. · Zbl 0565.94009
[13] P. Kovanic: A new theoretical and algorithmical tool for estimation, identification and control. Automatica 22 (1986), 6, 657-674. · Zbl 0608.93002 · doi:10.1016/0005-1098(86)90004-X
[14] P. Kovanic, J. Novovičová: Comparizon of statistical and gnostical estimates of parameter of location on real data. Proc. of ROBUST, JČMF, Prague 1986.
[15] J. Novovičová: M-estimators and gnostical estimators of location. Problems Control Inform. Theory 18 (1989), 6, 397-407. · Zbl 0725.62022
[16] G. P. Patil M. T. Boswell, M. V. Ratnaparkhi: Dictionary and classified bibliography of statistical distributions in scientific work. Internat. Co-operative Publ. House, Maryland 1984.
[17] A. P. Prudnikov J. A. Brychkov, O. I. Marichev: Integrals and Series. Nauka, Moskva 1981. · Zbl 0511.00044
[18] S. M. Stiegler: Do robust estimators work with real data?. Ann. Statist. 6 (1977), 1055-1098. · Zbl 0374.62050 · doi:10.1214/aos/1176343997
[19] I. Vajda: Efficiency and robustness control via distorted maximum likelihood estimation. Kybernetika 22 (1986), 1, 47-67. · Zbl 0603.62039 · eudml:28702
[20] I. Vajda: Minimum-distance and gnostical estimators. Problems Control Inform. Theory 17 (1987), 5, 253-266. · Zbl 0677.62024
[21] I. Vajda: Comparison of asymptotic variances for several estimators of location. Problems Control Inform. Theory 18 (1989), 2, 79-87. · Zbl 0678.62035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.