zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The generalized finite element method. (English) Zbl 0997.74069
Summary: This paper describes a pilot design and implementation of the generalized finite element method (GFEM), as a direct extension of the standard finite element method (SFEM, or FEM), which makes possible accurate solution of engineering problems in complex domains which may be practically impossible to solve using the FEM. The development of the GFEM is illustrated for the Laplacian in two space dimensions in domains which may include several hundreds of voids, and/or cracks, for which the construction of meshes used by the FEM is practically impossible. The two main capabilities are: (1) It is possible to construct the approximation using meshes which may overlap part, or all, of the domain boundary. (2) The method can be incorporated into the approximation handbook functions, which are known analytically, or are generated numerically, and the method can approximate well the solution of boundary value problems in the neighborhood of corner points, voids, cracks, etc. The main tool is a special integration algorithm, which we call the fast remeshing approach, which is robust and works for any domain with arbitrary complexity. The incorporation of the handbook functions into the GFEM is done by employing the partition of unity method. The presented formulations and implementations can be easily extended to the multi-material medium where the voids are replaced by inclusions of various shapes and sizes, and to the elasticity problem. This work can also be understood as a pilot study for the feasibility and demonstration of the capabilities of the GFEM, which is needed before analogous implementations are attempted in the three-dimensional and nonlinear cases, which are the cases of main interest for future work.

74S05Finite element methods in solid mechanics
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
Full Text: DOI
[1] Babuška, I.; Strouboulis, T.; Copps, K.: The design and analysis of the generalized finite element method. Comput. methods appl. Mech. engrg. 181, No. 1, 43-69 (2000) · Zbl 0983.65127
[2] Strouboulis, T.; Copps, K.; Babuška, I.: The generalized finite element method: an example of its implementation and illustration of its performance. Int. J. Numer. methods engrg. 47, No. 8, 1401-1417 (2000) · Zbl 0955.65080
[3] Babuška, I.; Caloz, G.; Osborn, J.: Special finite element methods in a class of second order elliptic problems with rough coefficients. SIAM J. Numer. anal. 31, 945-981 (1994) · Zbl 0807.65114
[4] J.M. Melenk, Finite element methods with harmonic shape functions for solving laplace’s equation, M.S. thesis, University of Maryland, College Park, MD, 1992
[5] J.M. Melenk, On generalized finite element methods, Ph.D. dissertation, University of Maryland, College Park, MD, 1995 (Advisor: I. Babuška)
[6] A. Duarte, The hp cloud method, Ph.D. dissertation, University of Texas at Austin, Austin, TX, 1996 (Advisor: J.T. Oden)
[7] Babuška, I.; Melenk, J. M.: The partition of unity finite element method: basic theory and applications. Comput. methods appl. Mech. engrg. 139, 289-314 (1996) · Zbl 0881.65099
[8] Babuška, I.; Melenk, J. M.: The partition of unity method. Int. J. Numer. methods engrg. 40, 727-758 (1997) · Zbl 0949.65117
[9] Melenk, J. M.; Babuška, I.: Approximation with harmonic and generalized harmonic polynomials in the partition of unity method. Comput. assist. Mech. engrg. Sci. 4, 607-632 (1997) · Zbl 0951.65128
[10] Duarte, C. A. M.; Oden, J. T.: An hp adaptive method using clouds. Comput. methods appl. Mech. engrg. 139, 237-262 (1996) · Zbl 0918.73328
[11] Duarte, C. A. M.; Oden, J. T.: Hp clouds -- an hp meshless method. Numer. methods partial differential equations 12, 673-705 (1996) · Zbl 0869.65069
[12] Liszka, T. J.; Duarte, C. A. M.; Tworzydlo, W. W.: Hp-meshless cloud method. Comput. methods appl. Mech. engrg. 139, 263-288 (1996) · Zbl 0893.73077
[13] Oden, J. T.; Duarte, C. A.; Zienkiewicz, O. C.: A new cloud-based hp finite element method. Comput. methods appl. Mech. engrg. 153, 117-126 (1998) · Zbl 0956.74062
[14] Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. methods engrg. 45, 601-620 (1999) · Zbl 0943.74061
[15] Moës, N.; Dolbow, J.; Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. methods engrg. 46, No. 1, 131-150 (1999) · Zbl 0955.74066
[16] Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T.: Extended finite element method for three-dimensional crack modeling. Int. J. Numer. methods engrg. 48, 1549-1570 (2000) · Zbl 0963.74067
[17] Dolbow, J.; Moës, N.; Belytschko, T.: Modeling fracture in Mindlin--Reissner plates with the extended finite element method. Int. J. Solids struct. 37, 7161-7183 (2000) · Zbl 0993.74061
[18] Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T.: Arbitrary branched and intersecting cracks with the extended finite element method. Int. J. Numer. methods engrg. 48, 1741-1760 (2000) · Zbl 0989.74066
[19] Liszka, T.; Orkisz, J.: The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. struct. 11, 83-95 (1980) · Zbl 0427.73077
[20] Liszka, T.: An interpolation method for an irregular net of nodes. Int. J. Numer. methods engrg. 20, 1599-1612 (1984) · Zbl 0544.65006
[21] I. Babuška, T. Strouboulis, The Finite Element Method and its Reliability, Oxford University Press, London, 2001, to appear · Zbl 0995.65501
[22] Brenner, S. C.; Scott, L. R.: The mathematical theory of finite element methods. (1994) · Zbl 0804.65101
[23] Szabo, B. A.; Babuška, I.: Finite element analysis. (1991)
[24] I. Babuška, B. Andersson, P.J. Smith, K. Levin, Damage analysis of fiber composites. Part I: statistical analysis on fiber scale, Technical Report, FFA TN 1998-15, Flygtekniska Försöksanstalten (Aeronautical Research Institute of Sweden), 1998
[25] Babuška, I.; Strouboulis, T.; Datta, D. K.; Copps, K.; Gangaraj, S. K.: A posteriori estimation and adaptive control of the error in the quantity of interest. Part I : a posteriori estimation of the error in the Mises stress and the stress-intensity factors. Comput. methods appl. Mech. engrg. 181, 261-294 (2000) · Zbl 0973.74083
[26] Booch, G.: Object oriented design with applications. (1991) · Zbl 0746.68017
[27] Chapman, S. J.: Fortran 90/95 for scientists and engineers. (1997) · Zbl 0909.68031
[28] Rumbaugh, J.; Jacobson, I.; Booch, G.: The unified modeling language reference manual. (1998)