Borwein, Jonathan Michael; Broadhurst, David J.; Kamnitzer, Joel Central binomial sums, multiple Clausen values, and zeta values. (English) Zbl 0998.11045 Exp. Math. 10, No. 1, 25-34 (2001). The goal of this paper is the evaluation (in terms of more basic constants) of the central binomial sums \(S(k):=\sum_{n=1}^\infty \frac{1}{n^k {2n \choose n}}\) for integers \(k\). Classical evaluations are \(S(2)=\frac 13 \zeta(2)\) and \(S(4)=\frac{17}{36} \zeta(4)\). The authors’ new evaluations are based on a connection (via log-sine integrals) of the central binomial sums to multiple Clausen values (MCV’s) \(\mu(a_1,\dots,a_k):=\text{Li}_{a_1,\dots,a_k}(\omega)\), where \(\omega=e^{i\pi/3}\) is the sixth root of unity, and \(\text{Li}_{a_1,\dots,a_k}(z):=\sum_{n_1>\dots>n_k>0} \frac{z^{n_1}}{n_1^{a_1}\cdots n_k^{a_k}}\) is a multidimensional polylogarithm. Examples of such new evaluations are \(S(3)=\frac 23 \pi \operatorname{Im}(\mu(2))-\frac 43 \zeta(3)\) or \(S(6)=-\frac 43 \pi \operatorname{Im}(\mu(4,1))+\frac{3341}{1296} \zeta(6)-\frac 43 \zeta(3)^2\). The authors then investigate relationships (duality formulas) between sets of different MCV’s, and they use these and generating function results to give explicit evaluations for certain classes of MCV’s. Finally, they give some evaluations for the alternating binomial series (Apéry sums) \(A(k):=\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^k {2n \choose n}}\). Reviewer: Roland Girgensohn (Neuherberg) Cited in 2 ReviewsCited in 38 Documents MSC: 11M06 \(\zeta (s)\) and \(L(s, \chi)\) 05A10 Factorials, binomial coefficients, combinatorial functions 11B75 Other combinatorial number theory 33B30 Higher logarithm functions Keywords:binomial sums; multiple zeta values; log-sine integrals; Clausen’s function; multiple Clausen values; polylogarithms; Apéry sums × Cite Format Result Cite Review PDF Full Text: DOI arXiv EuDML EMIS Online Encyclopedia of Integer Sequences: Decimal expansion of zeta(4). Decimal expansion of the central binomial sum S(5), where S(k) = Sum_{n>=1} 1/(n^k*binomial(2n,n)). Decimal expansion of the central binomial sum S(6), where S(k) = Sum_{n>=1} 1/(n^k binomial(2n,n)). Decimal expansion of the central binomial sum S(7), where S(k) = Sum_{n>=1} 1/(n^k binomial(2n,n)). Decimal expansion of the central binomial sum S(8), where S(k) = Sum_{n>=1} 1/(n^k binomial(2n,n)). References: [1] Abramowitz M., Handbook of mathematical functions with formulas, graphs, and mathematical tables (1972) · Zbl 0543.33001 [2] Bailey D. H., Mathematics unlimited: 2001 and beyond (2000) [3] Bailey D. H., ”A seventeenth-order polylogarithm ladder” (1999) [4] Bailey D. H., Math. Comp. (2001) [5] Borwein J. M., Pi and the AGM: a study in analytic number theory and computational complexity (1987) · Zbl 0611.10001 [6] DOI: 10.1016/S0012-365X(99)00256-3 · Zbl 0959.68134 · doi:10.1016/S0012-365X(99)00256-3 [7] Borwein J. M., Electron. J. Combin. 4 (2) pp RP 5– (1997) [8] Borwein J. M., Electron. J. Combin. 5 (1) pp 12– (1998) [9] DOI: 10.1016/S0377-0427(00)00336-8 · Zbl 0972.11077 · doi:10.1016/S0377-0427(00)00336-8 [10] Borwein J. M., Trans. Amer. Math. Soc. (2001) [11] Broadhurst D. J., ”Polylogarithmic ladders, hypergeometric series and the ten millionth digits of {\(\zeta\)}(3) and {\(\zeta\)}(5)” (1998) [12] Broadhurst D. J., Eur. Phys. J. C Part. Fields 8 (2) pp 313– (1999) [13] Cohen H., Experiment. Math. 1 (1) pp 25– (1992) [14] Ghusayni B., Missouri J. Math. Sci. 10 (3) pp 169– (1998) [15] Lewin L., Polylogarithms and associated functions (1981) · Zbl 0465.33001 [16] Lewin L., Structural properties of polylogarithms (1991) · Zbl 0745.33009 [17] DOI: 10.1142/S0217751X00000367 · Zbl 0951.33003 · doi:10.1142/S0217751X00000367 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.