Paley-Wiener-type theorems for a class of integral transforms. (English) Zbl 0998.44001

In this interesting paper the authors give a characterization of weighted \(L_2 (I)\) spaces in terms of their images under several integral transforms. These findings are then used to derive Paley-Wiener type theorems for these spaces. The results obtained here use real variable techniques and do not require analytic continuation to the complete plane.
Eight examples involving various integral transforms are considered. They involve singular Sturm-Liouville boundary-value problems on a half line and on the whole line.
The approach considered herein is indeed unified in nature and covers a large spectrum of integral transforms.
Reviewer: K.C.Gupta (Jaipur)


44A05 General integral transforms
34B24 Sturm-Liouville theory
Full Text: DOI


[1] Abramowitz, M.; Stegun, I.A., Handbook of mathematical functions, with formulas, graphs, and mathematical tables, (1972), Dover New York · Zbl 0543.33001
[2] Bang, H.H., A property of infinitely differentiable functions, Proc. amer. math. soc., 108, 73-76, (1990) · Zbl 0707.26015
[3] Bang, H.H., Functions with bounded spectrum, Trans. amer. math. soc., 347, 1067-1080, (1995) · Zbl 0828.42009
[4] Flensted-Jensen, M., Paley – wiener type theorems for a differential operator connected with symmetric spaces, Ark. mat., 10, 143-162, (1972) · Zbl 0233.42012
[5] Koornwinder, T., A new proof of a paley – wiener type theorem for the Jacobi transform, Ark. mat., 13, 145-159, (1975) · Zbl 0303.42022
[6] Levitan, B.M., Eigenfunction expansions, (1950) · Zbl 0879.47026
[7] Levitan, B.M.; Sargsjan, I.S., Sturm – liouville and Dirac operators, (1991), Kluwer Acaddemic Dordrecht · Zbl 0302.47036
[8] R. E. A. C. Paley, and, N. Wiener, Fourier Transforms in the Complex Domain, Colloq. Publ. Amer. Math. Soc, 1934, Gordon & Breach, New York, 1993. · Zbl 0011.01601
[9] Stein, E.M.; Weiss, G., Introduction to Fourier analysis on Euclidean spaces, (1971), Princeton Univ. Press Princeton · Zbl 0232.42007
[10] Titchmarsh, E.C., Introduction to the theory of Fourier integrals, (1986), Chelsea New York · Zbl 0601.10026
[11] Titchmarsh, E.C., Eigenfunction expansions associated with second-order differential equations, (1962), Clarendon Oxford · Zbl 0099.05201
[12] Tuan, Vu Kim, On the paley – wiener theorem, Theory of functions and applications. collection of works dedicated to the memory of mkhitar M. Djrbashian, (1995), Louys Yerevan, p. 193-196
[13] Vu Kim, Tuan, Supports of functions and integral transforms, inProceedings of International Workshop on the Recent Advances in Applied Mathematics (RAAM’ 96), Kuwait, 1996, pp. 507-521. · Zbl 0917.44002
[14] Tuan, Vu Kim, On the range of the Y-transform, Bull austral. math. soc., 54, 329-345, (1996) · Zbl 0864.44002
[15] Tuan, Vu Kim, On the range of the Hankel and extended Hankel transforms, J. math. anal. appl., 209, 460-478, (1997) · Zbl 0881.44004
[16] Tuan, Vu Kim, New type of paley – wiener theorems for the modified multidimensional Mellin transform, J. Fourier anal. appl., 4, 315-326, (1998) · Zbl 0913.44003
[17] Tuan, Vu Kim, Airy integral transform and the paley – wiener theorem, (), 523-531 · Zbl 0923.44003
[18] Tuan, Vu Kim, Paley – wiener- type theorems, Frac. cal. appl. anal., 2, 135-143, (1999) · Zbl 1030.42008
[19] Tuan, Vu Kim, On the supports of functions, Numer. funct. anal. optimiz., 20, 387-394, (1999) · Zbl 0930.26011
[20] Zayed, A.I., Function and generalized function transformations, (1996), CRC Press Boca Raton · Zbl 0851.44002
[21] Zayed, A.I.; Walter, G., On the inversion of integral transforms associated with sturm – liouville problems, J. math. anal. appl., 164, 285-306, (1992) · Zbl 0753.34014
[22] Zayed, A.I.; Walter, G., The continuous (α,β)-transform and its inverse when α+β+1 is a positive integer, Trans. amer. math. soc., 305, 653-664, (1988) · Zbl 0644.33014
[23] Zayed, A.I., On integral transforms whose kernels are solutions of singular sturm – liouville problems, Proc. roy. soc. Edinburgh sect. A, 108, 201-228, (1988) · Zbl 0649.44003
[24] Zayed, A.I., Real singularities of sturm – liouville expansions, SIAM J. math. anal., 18, 219-227, (1987) · Zbl 0613.34017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.