Mishura, Yu. S. Abstract Volterra equations with stochastic kernels. (English. Ukrainian original) Zbl 0998.60054 Theory Probab. Math. Stat. 64, 139-151 (2002); translation from Teor. Jmovirn. Mat. Stat. 64, 118-128 (2001). The Volterra equation \[ x(t,\omega)=f(t,\omega)+\int_0^t a(t-s,\omega)Ax(s,\omega)ds \] with the stochastic kernel \(a(t,\omega)\) is considered. The author proposes a sufficient condition for existence and uniqueness of a solution to this equation. As application, an equation from fluid mechanics is investigated. Reviewer: M.P.Moklyachuk (Kyïv) Cited in 1 Document MSC: 60H05 Stochastic integrals 76M35 Stochastic analysis applied to problems in fluid mechanics 60H07 Stochastic calculus of variations and the Malliavin calculus Keywords:Volterra equation; stochastic kernel PDFBibTeX XMLCite \textit{Yu. S. Mishura}, Teor. Ĭmovirn. Mat. Stat. 64, 118--128 (2001; Zbl 0998.60054); translation from Teor. Jmovirn. Mat. Stat. 64, 118--128 (2001)