Nishchenko, I. I. On an asymptotic representation of a normalizing factor for a random matrix-valued evolution. (English. Ukrainian original) Zbl 0998.60086 Theory Probab. Math. Stat. 64, 153-160 (2002); translation from Teor. Jmovirn. Mat. Stat. 64, 129-135 (2001). Let \(\{N^{\varepsilon}(t),\varepsilon>0\}\) be a family of random matrix-valued evolutions constructed by a family of stochastically continuous nonnegative random processes depending on a small parameter. The author studies the asymptotic behaviour of the normalizing multiplier \(\rho^{\varepsilon}\) such that there is a finite limit as \(\varepsilon \to 0\) of the mathematical expectation \(EN^{\varepsilon}(\cdot)\) under the time scale parameter change \(t/\rho^{\varepsilon}\). Reviewer: N.M.Zinchenko (Kyïv) Cited in 1 Document MSC: 60K15 Markov renewal processes, semi-Markov processes Keywords:random evolution; random process; small parameter; mathematical expectation PDFBibTeX XMLCite \textit{I. I. Nishchenko}, Teor. Ĭmovirn. Mat. Stat. 64, 129--135 (2001; Zbl 0998.60086); translation from Teor. Jmovirn. Mat. Stat. 64, 129--135 (2001)