zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bubbles in anti-de Sitter space. (English) Zbl 0998.83018
Summary: We explore the bubble spacetimes which can be obtained from double analytic continuations of static and rotating black holes in anti-de Sitter space. In particular, we find that rotating black holes with elliptic horizon lead to bubble spacetimes only in dimension greater than five. For dimension greater than seven, the topology of the bubble can be non-spherical. However, a bubble spacetime is shown to arise from a rotating de Sitter black hole in four dimensions. In all cases, the evolution of the bubble is of de Sitter type. Double analytic continuations of hyperbolic black holes and branes are also discussed.

83C15Closed form solutions of equations in general relativity
Full Text: DOI
[1] Aharony, O.; Fabinger, M.; Horowitz, G. T.; Silverstein, E.:
[2] Witten, E.: Nucl. phys. B. 195, 481 (1982)
[3] Dowker, F.; Gauntlett, J. P.; Gibbons, G. W.; Horowitz, G. T.: Phys. rev. D. 52, 6929 (1995)
[4] Dowker, F.; Gauntlett, J. P.; Gibbons, G. W.; Horowitz, G. T.: Phys. rev. D. 53, 7115 (1996)
[5] Horowitz, G. T.; Myers, R. C.: Phys. rev. D. 59, 026005 (1999)
[6] Ida, D.; Shiromizu, T.; Ochiai, H.: Phys. rev. D. 65, 023504 (2002)
[7] Ochiai, H.; Ida, D.; Shiromizu, T.:
[8] Costa, M. S.; Gutperle, M.: Jhep. 0103, 027 (2001)
[9] Fabinger, M.; Horava, P.: Nucl. phys. B. 580, 243 (2000)
[10] Lemos, J. P.: Phys. lett. B. 353, 46 (1995)
[11] Huang, C. G.; Liang, C. B.: Phys. lett. A. 201, 27 (1995)
[12] Cai, R. G.; Zhang, Y. Z.: Phys. rev. D. 54, 4891 (1996)
[13] åminneborg, S.; Bengtsson, I.; Holst, S.; Peldán, P.: Class. quantum grav.. 13, 2707 (1999)
[14] Mann, R. B.: Class. quantum grav.. 14, L109 (1997)
[15] Vanzo, L.: Phys. rev. D. 56, 6475 (1997)
[16] Brill, D. R.; Louko, J.; Peldán, P.: Phys. rev. D. 56, 3600 (1997)
[17] Birmingham, D.: Class. quantum grav.. 16, 1197 (1999)
[18] Hawking, S. W.; Hunter, C. J.; Taylor-Robinson, M. M.: Phys. rev. D. 59, 064005 (1999)
[19] Klemm, D.; Moretti, V.; Vanzo, L.: Phys. rev. D. 60, 109902 (1999)
[20] Klemm, D.: Jhep. 9811, 019 (1998)
[21] Dehghani, M. H.:
[22] Cai, R. G.: Nucl. phys. B. 628, 375 (2002)
[23] Dehghani, M. H.: Phys. rev. D. 65, 104030 (2002)